【題目】讀下面的程序:
i=1
S=0
DO
INPUT x
S=S+x
i=i+1
LOOP UNTIL i>10
A=S/10
PRINT A
END
該程序的作用是
A. 計算9個數的和 B. 計算9個數的平均數
C. 計算10個數的和 D. 計算10個數的平均數
科目:高中數學 來源: 題型:
【題目】已知函數,函數
.
⑴若的定義域為
,求實數
的取值范圍;
⑵當時,求函數
的最小值
;
⑶是否存在非負實數、
,使得函數
的定義域為
,值域為
,若存在,求出
、
的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠對一批產品進行了抽樣檢測.如圖是根據抽樣檢測后的產品凈重(單位:克)數據繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數據分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產品凈重小于100克的個數是36,則樣本中凈重大于或等于98克并且小于104克的產品的個數是( )
A. 90 B. 75 C. 60 D. 45
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面
底面
,
,
為
中點,底面
是直角梯形,
,
,
,
.
(1)求證:平面
;
(2)求證:平面平面
;
(3)設為棱
上一點,
,試確定
的值使得二面角
為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算數平方根成正比,已知投資1萬元時兩類產品的收益分別是0.125萬元和0.5萬元(如圖).
(1) 分別寫出兩種產品的收益與投資的函數關系;
(2) 該家庭現有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形. ①、②、③組合成“三段論”.根據“三段論”推理出一個結論,則這個結論是( )
A. 正方形是平行四邊形 B. 平行四邊形的對角線相等
C. 正方形的對角線相等 D. 以上均不正確
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD為直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點.
(1)求證:BE∥平面PAD;
(2)若AP=2AB,求證:BE⊥平面PCD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com