【題目】某網絡營銷部門為了統計某市網友2016年12月12日的網購情況,從該市當天參與網購的顧客中隨機抽查了男女各30人,統計其網購金額,得到如下頻率分布直方圖:
網購達人 | 非網購達人 | 合計 | |
男性 | 30 | ||
女性 | 12 | 30 | |
合計 | 60 |
若網購金額超過千元的顧客稱為“網購達人”,網購金額不超過
千元的顧客稱為“非網購達人”.
(Ⅰ)若抽取的“網購達人”中女性占12人,請根據條件完成上面的列聯表,并判斷是否有99%的把握認為“網購達人”與性別有關?
(Ⅱ)該營銷部門為了進一步了解這名網友的購物體驗,從“非網購達人”、“網購達人”中用分層抽樣的方法確定12人,若需從這12人中隨機選取
人進行問卷調查.設
為選取的
人中“網購達人”的人數,求
的分布列和數學期望.
(參考公式: ,其中
)
P( | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點為,
是橢圓上一點,若
,
.
(1)求橢圓的方程;
(2)直線過右焦點
(不與
軸重合)且與橢圓相交于不同的兩點
,在
軸上是否存在一個定點
,使得
的值為定值?若存在,寫出
點的坐標(不必求出定值);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】支籃球隊進行單循環比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是
.單循環比賽結束,以獲勝的場次數作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:
:恰有四支球隊并列第一名為不可能事件;
:有可能出現恰有兩支球隊并列第一名;
:每支球隊都既有勝又有敗的概率為
;
:五支球隊成績并列第一名的概率為
.
其中真命題是
A. ,
,
B.
,
,
C.
.
.
D.
.
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知空間三點A(0,2,3),B(﹣2,1,6),C(1,﹣1,5);求:
(1)求以向量 為一組鄰邊的平行四邊形的面積S;
(2)若向量a分別與向量 垂直,且|a|=
,求向量a的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓
過點
,
,
分別為橢圓
的右、下頂點,且
.
(1)求橢圓的方程;
(2)設點在橢圓
內,滿足直線
,
的斜率乘積為
,且直線
,
分別交橢圓
于點
,
.
(i) 若,
關于
軸對稱,求直線
的斜率;
(ii) 求證: 的面積與
的面積相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)為定義R在的偶函數,當0≤x≤2時,y= ;當x>2時,y=f(x)的圖象是頂點在p(3,4),且過點A(2,3)的拋物線的一部分.
(1)求函數f(x)的解析式;
(2)在下面的直角坐標系中直接畫出函數f(x)的圖象,寫出函數f(x)的單調區間(無需證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計全國高三學生的視力情況,得到如圖所示的頻率分布直方圖,由于不慎將部分數據丟失,但知道前4組的頻率成等比數列,后6組的頻率成等差數列.
(Ⅰ)求出視力在[4.7,4.8]的頻率;
(Ⅱ)現從全國的高三學生中隨機地抽取4人,用表示視力在[4.3,4.7]的學生人數,寫出
的分布列,并求出
的期望與方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應國家“精準扶貧,產業扶貧”的戰略,某市面向全市征召《扶貧政策》義務宣傳志愿者,從年齡在的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示.
(Ⅰ)求圖中的值;
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com