【題目】已知拋物線的準線為
,焦點為
,
為坐標原點.
(1)求過點,且與
相切的圓的方程;
(2)過的直線交拋物線
于
兩點,
關于
軸的對稱點為
,求證:直線
過定點.
【答案】(1);(2)見解析.
【解析】試題分析:(1)圓過
可得
,圓
與直線
相切,可得
.
由,得
.從而得圓的方程.
(2)聯立方程可得韋達定理:
,
.
表示直線的方程為
,由對稱性可令
,得
化簡整理可得直線
過定點
.
試題解析:解法一:(1)拋物線的準線
的方程為:
,焦點坐標為
,
設所求圓的圓心,半徑為
,
圓
過
,
,
圓
與直線
相切,
.
由,得
.
過
,且與直線
相切的圓的方程為
.
(2)依題意知直線的斜率存在,設直線
方程為
,
,
,
,
,
聯立,消去
得
.
,
.
直線
的方程為
,
令
,得
.
直線過定點
,
解法二:(1)同解法一.
(2)直線過定點
.
證明:依題意知直線的斜率存在,設直線
方程為
,
,
,
,
,
聯立,消去
得
,
,
.
,
.
,即
,
三點共線,
直線
過定點
.
解法三:(1)同解法一.
(2)設直線的方程:
,
,
,則
.
由得,
.
,
.
,
直線
的方程為
.
.
直線
過定點
.
點睛:定點、定值問題通常是通過設參數或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉化為代數式或三角問題,證明該式是恒定的. 定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結果,因此求解時應設參數,運用推理,到最后必定參數統消,定點、定值顯現.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.現已畫出函數f(x)在y軸左側的圖象,如圖所示,并根據
(1)寫出函數f(x)(x∈R)的增區間;
(2)寫出函數f(x)(x∈R)的解析式;
(3)若函數g(x)=f(x)﹣2ax+2(x∈[1,2]),求函數g(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)過點P(﹣1,﹣1),c為橢圓的半焦距,且c=
b.過點P作兩條互相垂直的直線l1 , l2與橢圓C分別交于另兩點M,N.
(1)求橢圓C的方程;
(2)若直線l1的斜率為﹣1,求△PMN的面積;
(3)若線段MN的中點在x軸上,求直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)= 是奇函數.
(1)求a,b的值;
(2)判斷函數的單調性并證明;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知P(﹣2,3)是函數y= 圖象上的點,Q是雙曲線在第四象限這一分支上的動點,過點Q作直線,使其與雙曲線y=
只有一個公共點,且與x軸、y軸分別交于點C、D,另一條直線y=
x+6與x軸、y軸分別交于點A、B.則
(1)O為坐標原點,三角形OCD的面積為 .
(2)四邊形ABCD面積的最小值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數,當x<0時,f(x)=( )x .
(1)求當x>0時f(x)的解析式;
(2)畫出函數f(x)在R上的圖象;
(3)寫出它的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題的說法錯誤的是( )
A.命題“若x2﹣3x+2=0,則 x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”.
B.“x=1”是“x2﹣3x+2=0”的充分必要條件.
C.命題p:“?x∈R,sinx+cosx≤ ”是真命題
D.若¬(p∧q)為真命題,則p、q至少有一個為假命題.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com