精英家教網 > 高中數學 > 題目詳情
以下有四種說法:
①“m是實數”是“m是有理數”的充分不必要條件;
②命題“若a<b,則a+c<b+c”的逆否命題是“若a+c≥b+c,則a≥b”;
③“x=3”是“x2-2x-3=0”的必要不充分條件;
④命題“?n∈R,使得n2+n<0”的否定為“?n∈R,均有n2+n≥0”.
其中正確說法的序號為
②④
②④
.(填序號)
分析:①利用充分條件和必要條件的定義判斷.②利用逆否命題的定義判斷.③利用條件和必要條件的定義判斷.④利用特稱命題的否定判斷.
解答:解:①因為{有理數}?{實數},所以“m是實數”是“m是有理數”的必要不充分;錯誤.
②根據逆否命題的定義可知命題“若a<b,則a+c<b+c”的逆否命題是“若a+c≥b+c,則a≥b”;正確.
③由x2-2x-3=0得x=3或x=-1,所以③“x=3”是“x2-2x-3=0”的充分不必要條件,錯誤.
④特稱命題的否定是全稱命題,所以命題“?n∈R,使得n2+n<0”的否定為“?n∈R,均有n2+n≥0”.正確.
故答案為:②④.
點評:本題主要考查命題的真假判斷,涉及的知識點較多.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)由變量x和y的數據得到其回歸直線方程l: 
y
=bx+a
,則l一定經過點P(
.
x
, 
.
y
)

以上四種說法,其中正確說法的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若a>b,則ac>bc;
(4)“x=1”是“x2-1=0”的充分不必要條件.
以上四種說法,其中正確說法的序號為
(1)、(4)
(1)、(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)若定義在R上的函數f(x)滿足f(x+2)=-f(x-1),則6為函數f(x)的周期.
以上四種說法,其中正確說法的序號為
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

以下有四種說法:
(1)若f′(x0)=0,則f(x)在x=x0處取得極值;
(2)由變量x和y的數據得到其回歸直線方程l: 
y
=bx+a
,則l一定經過點P(
.
x
, 
.
y
)
;
(3)若p∨q為真,p∧q為假,則p與q必為一真一假;
(4)函數f(x)=sin(x+
π
6
)cos(x+
π
6
)
最小正周期為π,其圖象的一條對稱軸為x=
π
12

以上四種說法,其中正確說法的序號為
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视