某建筑公司要在一塊寬大的矩形地面(如圖所示)上進行開發建設,陰影部分為一公共設施建設不能開發,且要求用欄柵隔開(欄柵要求在一直線上),公共設施邊界為曲線的一部分,欄柵與矩形區域的邊界交于點
,交曲線于點
,設
.
(1)將△(
為坐標原點)的面積
表示成
的函數
;
(2)若在處,
取得最小值,求此時
的值及
的最小值.
科目:高中數學 來源: 題型:解答題
已知函數,其中
是實數,設
為該函數的圖象上的兩點,且
.
⑴指出函數的單調區間;
⑵若函數的圖象在點
處的切線互相垂直,且
,求
的最小值;
⑶若函數的圖象在點
處的切線重合,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數.
(1) 當時,函數
恒有意義,求實數a的取值范圍;
(2) 是否存在這樣的實數a,使得函數在區間
上為增函數,并且
的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
揚州某地區要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設計其橫斷面要求面積為
平方米,且高度不低于
米.記防洪堤橫斷面的腰長為
(米),外周長(梯形的上底線段
與兩腰長的和)為
(米).
⑴求關于
的函數關系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長不超過米,則其腰長
應在什么范圍內?
⑶當防洪堤的腰長為多少米時,堤的上面與兩側面的水泥用料最。磾嗝娴耐庵荛L最。?求此時外周長的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若的定義域為
,值域為
,則稱函數
是
上的“四維方軍”函數.
(1)設是
上的“四維方軍”函數,求常數
的值;
(2)問是否存在常數使函數
是區間
上的“四維方軍”函數?若存在,求出
的值,否則,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com