精英家教網 > 高中數學 > 題目詳情
已知是二次函數,不等式的解集是,且在點處的切線與直線平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在區間內有兩個不等的實數根?
若存在,求出t的值;若不存在,說明理由.
(1).
(2)存在唯一的自然數,使得方程在區間內有且只有兩個不等的實數根. 

試題分析:(1)根據是二次函數,及不等式的解集是,
可設,. 再根據函數在切點的斜率就是該點處的導函數值,可建立
方程,解得.
(2)首先由(1)知,方程等價于方程.
構造函數,通過“求導數、求駐點、討論導數值的正負”明確函數的單調區間,通過計算,
認識方程有實根的情況.
試題解析:(1)∵是二次函數,不等式的解集是
∴可設,.
.                                           2分
∵函數在點處的切線與直線平行,
.
,解得.
.                           5分
(2)由(1)知,方程等價于方程  6分
,
.                         7分
時,,函數上單調遞減;
時,,函數上單調遞增.   9分

∴方程在區間,內分別有唯一實數根,在區間
內沒有實數根.                  12分
∴存在唯一的自然數,使得方程
在區間內有且只有兩個不等的根.      13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ)設,求的最小值;
(Ⅱ)如何上下平移的圖象,使得的圖象有公共點且在公共點處切線相同.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ)若,求在點處的切線方程;
(Ⅱ)求函數的極值點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為常數),其圖象是曲線
(1)當時,求函數的單調減區間;
(2)設函數的導函數為,若存在唯一的實數,使得同時成立,求實數的取值范圍;
(3)已知點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線,設切線的斜率分別為.問:是否存在常數,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ)若曲線處的切線互相平行,求的值;
(Ⅱ)求的單調區間;
(Ⅲ)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當時,求的極值;
(Ⅱ)當a>0時,討論的單調性;
(Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數,.
(1)當時,求函數的單調區間和極值;
(2)若恒成立,求實數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為常數)
(1)當恒成立,求實數的取值范圍;
(2)若函數有對稱中心為A(1,0),求證:函數的切線在切點處穿過圖象的充要條件是恰為函數在點A處的切線.(直線穿過曲線是指:直線與曲線有交點,且在交點左右附近曲線在直線異側)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x∈(1,+∞).
(1)求函數f(x)的單調區間;
(2)函數f(x)在區間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视