【題目】已知函數,若方程
有四個不等實根
,時,不等式
恒成立,則實數
的最小值為()
A. B.
C.
D.
【答案】C
【解析】
畫出函數f(x)的圖象,結合對數函數的圖象和性質,可得x1x2=1,x1+x2
2,(4﹣x3)(4﹣x4)=1,且x1+x2+x3+x4=8,則不等式kx3x4+x12+x22≥k+11恒成立,可化為:k
恒成立,求出
的最大值,可得k的范圍,進而得到實數k的最小值.
函數f(x)的圖象如下圖所示:
當方程f(x)=m有四個不等實根x1,x2,x3,x4(x1<x2<x3<x4)時,
|lnx1|=|lnx2|,即x1x2=1,x1+x22,
|ln(4﹣x3)|=|ln(4﹣x4)|,即(4﹣x3)(4﹣x4)=1,
且x1+x2+x3+x4=8,
若不等式kx3x4+x12+x22≥k+11恒成立,
則k恒成立,
由[(x1+x2)﹣4
8]≤2
故k≥2,
故實數k的最小值為2,
故選:C.
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2015年1月至2017年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.根據該折線圖,下列結論錯誤的是()
A. 年接待游客量逐年增加
B. 各年的月接待游客量高峰期在8月
C. 2015年1月至12月月接待游客量的中位數為30萬人
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角三棱柱中,
、
分別為
、
的中點,
,
.
(1)求證:平面
;
(2)求證:平面平面
;
(3)若直線和平面
所成角的正弦值等于
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cos ωx·sin+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(1)求a和ω的值;
(2)求函數f(x)在[0,π]上的單調遞減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側面ABB1A1為菱形且∠BAA1=60°,D,M分別為CC1和A1B的中點,A1D⊥CC1,AA1=A1D=2,BC=1.
(1)證明:直線MD∥平面ABC;
(2)求D點到平面ABC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將長為、寬為
的矩形劃分為
個小正方形.一粒子不重復不遺漏連續地通過每個小正方形的一條對角線.這件事能否辦到?若辦不到,請說明理由;若能辦到,請給出一種行走路線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com