【題目】右邊程序框圖的算法思路源于我國古代數學名著《九章算術》中的“更相減損術”. 執行該程序框圖,若輸入的分別為16,20,則輸出的
( )
A. 0B. 2C. 4D. 1
科目:高中數學 來源: 題型:
【題目】“有黑掃黑、無黑除惡、無惡治亂”,維護社會穩定和和平發展.掃黑除惡期間,大量違法分子主動投案,某市公安機關對某月連續7天主動投案的人員進行了統計,表示第
天主動投案的人數,得到統計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若與
具有線性相關關系,請根據上表提供的數據,用最小二乘法求出
關于
的線性回歸方程
;
(2)判定變量與
之間是正相關還是負相關.(寫出正確答案,不用說明理由)
(3)預測第八天的主動投案的人數(按四舍五入取到整數).
參考公式:,
./span>
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究男、女生的身高差異,現隨機從高二某班選出男生、女生各10人,并測量他們的身高,測量結果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據測量結果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請根據測量結果得到20名學生身高的中位數(單位:厘米),將男、女生身高不低于
和低于
的人數填入下表中,并判斷是否有
的把握認為男、女生身高有差異?
人數 | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設可以用測量結果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究男、女生的身高差異,現隨機從高二某班選出男生、女生各10人,并測量他們的身高,測量結果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據測量結果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請根據測量結果得到20名學生身高的中位數(單位:厘米),將男、女生身高不低于
和低于
的人數填入下表中,并判斷是否有
的把握認為男、女生身高有差異?
人數 | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設可以用測量結果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,直線
的參數方程為
(
為參數,
),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)若,求直線
的普通方程及曲線
的直角坐標方程;
(Ⅱ)若直線與曲線
有兩個不同的交點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,其上一點
在準線上的射影為
,△
恰為一個邊長為4的等邊三角形.
(1)求拋物線的方程;
(2)若過定點的直線
交拋物線
于
,
兩點,
為坐標原點)的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標系xOy中,橢圓C:(a>b>0)的上頂點到焦點的距離為2,離心率為
.
(1)求a,b的值.
(2)設P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.
(ⅰ)若k=1,求△OAB面積的最大值;
(ⅱ)若PA2+PB2的值與點P的位置無關,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程為
,直線
,直線
.以極點
為原點,極軸為
軸的正半軸建立平面直角坐標系.
(1)求直線,
的直角坐標方程以及曲線
的參數方程;
(2)已知直線與曲線
交于
兩點,直線
與曲線
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在常數,使得對定義域
內的任意
,都有
成立,則稱函數
在其定義域
上是“
利普希茲條件函數”.
(1)若函數是“
利普希茲條件函數”,求常數
的最小值;
(2)判斷函數是否是“
利普希茲條件函數”,若是,請證明,若不是,請說明理由;
(3)若是周期為2的“
利普希茲條件函數”,證明:對任意的實數
,都有
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com