【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數,則四面體ABCD的體積的最大值是 .
科目:高中數學 來源: 題型:
【題目】已知橢圓 的長軸長為4,焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)過動點的直線交
軸與點
,交
于點
(
在第一象限),且
是線段
的中點.過點
作
軸的垂線交
于另一點
,延長
交
于點
.
(ⅰ)設直線的斜率分別為
,證明
為定值;
(ⅱ)求直線的斜率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,過焦點且垂直于x軸的直線被橢圓截得的線段長為3.
(1)求橢圓的方程;
(2)動直線與橢圓交于A,B兩點,在平面上是否存在定點P,使得當直線PA與直線PB的斜率均存在時,斜率之和是與
無關的常數?若存在,求出所有滿足條件的定點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,橢圓
與
軸交于
兩點,且
.
(1)求橢圓的方程;
(2)設點是橢圓
上的一個動點,且點
在
軸的右側,直線
與直線
交于
兩點,若以
為直徑的圓與
軸交于
,求點
橫坐標的取值范圍及
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半圓:
,
、
分別為半圓
與
軸的左、右交點,直線
過點
且與
軸垂直,點
在直線
上,縱坐標為
,若在半圓
上存在點
使
,則
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將個不同的紅球和
個不同的白球,放入同一個袋中,現從中取出
個球.
(1)若取出的紅球的個數不少于白球的個數,則有多少種不同的取法;
(2)取出一個紅球記分,取出一個白球記
分,若取出
個球的總分不少于
分,則有多少種不同的取法;
(3)若將取出的個球放入一箱子中,記“從箱子中任意取出
個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到
個紅球并且恰有一次取到
個白球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,公路圍成的是一塊頂角為
的角形耕地,其中
,在該塊土地中
處有一小型建筑,經測量,它到公路
的距離分別為
,現要過點
修建一條直線公路
,將三條公路圍成的區域
建成一個工業園.
(1)以為坐標原點建立適當的平面直角坐標系,并求出
點的坐標;
(2)三條公路圍成的工業園區的面積恰為
,求公路
所在直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】火把節是彝族、白族、納西族、基諾族、拉祜族等民族的古老傳統節日,有著深厚的民俗文化內涵,被稱為“東方的狂歡節”涼山州旅游局為了解民眾對火把節知識的知曉情況,對西昌市區 A,B 兩小區的部分居民開展了問卷調查,他們得分(滿分100分)數據,統計結果如下:
A小區 | ||||
得分范圍/分 | ||||
頻率 |
B小區
(1)以每組數據的中點值作為該組數據的代表,求B小區的平均分;
(2)若A小區得分在內的人數為
人,B小區得分在
內的人數為
人,求在 A,B 兩小區中所有參加問卷調查的居民中得分不低于
分的頻率;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com