精英家教網 > 高中數學 > 題目詳情

 已知各項均為正數的數列,

的等比中項。

(1)求證:數列是等差數列;(2)若的前n項和為Tn,求Tn。

 

【答案】

(1)見解析;(2)

【解析】

試題分析: (1)要證明一個數列是等差數列,關鍵是證明從第二項起后一項與前一項的差都為同一個常數即可。

(2)在第一問的基礎上,進一步結合錯位相減法求數列的和。

(1)由題意,

是等差數列

(2)

  ①

  ②

①—②得

考點:本題主要考查了利用通項公式與前n項和關系式的運用求解得到其通項公式,同時能利用等差數列的定義得到證明,和數列的求和運用。

點評:解決該試題的關鍵是根據通項公式與前n項和關系式得到其通項公式,以及錯位相減法求數列的和的運用。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較數學公式數學公式的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:青島二模 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:《第2章 數列》、《第3章 不等式》2010年單元測試卷(陳經綸中學)(解析版) 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源:2012年高考復習方案配套課標版月考數學試卷(二)(解析版) 題型:解答題

已知各項均為正數的數列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數{an}的通項公式;
(Ⅱ)設數{bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视