精英家教網 > 高中數學 > 題目詳情

已知等比數列

(I)求的通項公式;

(II)令,求數列的前n項和Sn.

解:(I)設數列{}的公比為q,

       由

       可得

       解得a1=2,q=4.

       所以數列{}的通項公式為

   (II)由,

       得

       所以數列{}是首項b1=1,公差d=2的等差數列.

       故.

       即數列{}的前n項和Sn=n2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等比數列{an}的首項、公比、前三項的平均值都等于常數a.
(I)求數列{an}的通項公式;
(II)設a≠1,n≥2,記bn=
an
a2n+an-2
,Tn=b2+b3+…+bn

(i)證明:bn=-
1
3
[
1
(-2)n-1-1
-
1
(-2)n-1
]

(ii)若Tn
7
60
,求n的所有可能取值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年東城區統一練習一文)(13分)

已知等比數列

   (I)求的通項公式;

   (II)令,求數列的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年銀川一中三模文)(12分)已知等比數列

   (I)求的通項公式;

   (II)令,求數列的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分10分)已知等比數列   (I)求數列的通項公式;  (II)設

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视