精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,AFADa,GEF的中點.

(1)求證:平面AGC⊥平面BGC;

(2)GB與平面AGC所成角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析:(1).正方形ABCD,∵ABCD⊥ABEF且交于AB,∴CB⊥ABEF

∵AG,GBABEF, ∴CB⊥AG,CB⊥BG.AD=2a,AF= a, ABEF是矩形,GEF的中點.

∴AG=BG=,AB=2a, AB2=AG2+BG2, ∴AG⊥BG,∵BC∩BG=B,∴AG⊥平面CBG,AGAGC,故平

AGC⊥平面BGC.

(2).如圖,(1)知面AGC⊥BGC,且交于GC,在平面BGC內作BH⊥GC,垂足為H,BH⊥平面AGC,

∴∠BGHGB與平面AGC所成的角.

R t△CBG

BG=,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設y=f(x)是二次函數,方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在下列四個正方體中,為正方體的兩個頂點,為所在棱的中點,則在這四個正方體中,直接與平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果對定義在R上的函數f(x)對任意兩個不相等的實數x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則稱函數f(x)為“H函數”.給出下列函數①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函數”的個數為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱柱ABCA1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,FF1分別是AC,A1C1的中點.

求證:(1)平面AB1F1平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱上的有界函數,其中稱為函數的上界.

)判斷函數, 是否是有界函數,請寫出詳細判斷過程.

)試證明:設 ,若, 上分別以 為上界,求證:函數上以為上界.

)若函數上是以為上界的有界函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P ABCD中,ABCD,ABAD,CD2AB,平面PAD⊥底面ABCD,PAAD,EF分別為CDPC的中點.

求證:(1) BE∥平面PAD;

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= +alnx﹣2,曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+3垂直.
(1)求實數a的值;
(2)記g(x)=f(x)+x﹣b(b∈R),若函數g(x)在區間[e﹣1 , e]上有兩個零點,求實數b的取值范圍;
(3)若不等式πf(x)>( 1+x﹣lnx在|t|≤2時恒成立,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)求與點P(3,5)關于直線l:x-3y+2=0對稱的點P′的坐標.(2)已知直線l:y=-2x+6和點A(1,-1),過點A作直線l1與直線l相交于B點,且|AB|=5,求直線l1的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视