【題目】求下列不等的解集
(1)求不等式 ≥1的實數解;
(2)解關于x的不等式 >1.
【答案】
(1)解:不等式 ≥1
,由|x+1|≥|x+2|(x+1)2≥(x+2)2,化為2x+3≤0,解得x≤﹣
,由x+2≠0,解得x≠﹣2.
∴不等式的解集為{x|x≤﹣ 且x≠﹣2}
(2)解:不等式(x﹣2)[(a﹣1)x﹣(a﹣2)]>0 (I)
①當a>1時,(I)3(x﹣2)(x﹣ )>0,
因 =1﹣
<2,所以不等式解集為{x|x>2或x<
}
②當a<1時,(I)(x﹣2)(x﹣ )<0
若0<a<1時, >2時,不等式的解集為{x|2<x<
}
若a<0時, <2時,不等式解集為{x|
<x<2}
若a=0時,不等式的解集為.
③當a=1時,原不等式x﹣2>0,解集為{x|x>2}
綜上當a>1時,不等式解集為{x|x>2或x< };當a=1時,解集為{x|x>2};若0<a<1時,不等式的解集為{x|2<x<
};若a=0時,不等式的解集為;若a<0時,不等式解集為:{x|
<x<2}
【解析】(1)不等式式 ≥1
,由|x+1|≥|x+2|(x+1)2≥(x+2)2 , 展開解出即可.(2)不等式(x﹣2)[(a﹣1)x﹣(a﹣2)]>0,分類討論,結合而成不等式的解法,即可得出結論.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號).
科目:高中數學 來源: 題型:
【題目】記max{a,b}= ,設M=max{|x﹣y2+4|,|2y2﹣x+8|},若對一切實數x,y,M≥m2﹣2m都成立,則實數m的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,四點
,
,
,
中恰有兩個點為橢圓
的頂點,一個點為橢圓
的焦點.
(1)求橢圓的方程;
(2)若斜率為1的直線與橢圓
交于不同的兩點
,且
,求直線
方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小李從網上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯系小李.若小李能在10分鐘之內到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合P={x|x2﹣x﹣6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求實數a的取值范圍;
(2)若P∩Q=,求實數a的取值范圍;
(3)若P∩Q={x|0≤x<3},求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·朝鮮中學]在如圖所示的程序框圖中,有這樣一個執行框,其中的函數關系式為
,程序框圖中的
為函數
的定義域.
(1)若輸入,請寫出輸出的所有
的值;
(2)若輸出的所有都相等,試求輸入的初始值
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個多面體的直觀圖及三視圖如圖所示:(其中M,N分別是AF,BC的中點).
(1)求證:MN∥平面CDEF;
(2)求多面體A﹣CDEF的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com