精英家教網 > 高中數學 > 題目詳情

【題目】在三棱錐中,均為邊長為3的等邊三角形,且,則三棱錐外接球的體枳為( )

A. B. C. D.

【答案】C

【解析】分析:先過△ABC的外心作平面PBC的垂線,過△PBC的外心作平面PBC的垂線,設兩條垂線交于點O,O為三棱錐P-ABC外接球的球心.再求出,,再解△得到外接球的半徑R=OA=,最后求三棱錐P-ABC外接球的體積.

詳解:取BC的中點D,連接PD,AD,因為△ABC和△PBC均為等邊三角形,

所以AD⊥BC,PD⊥BC,AD∩PD=D,所以BC⊥平面PAD,

因為△ABC和△PBC均為邊長為3的等邊三角形,

所以AD=PD=,

又因為,所以PD⊥AD,

過△ABC的外心作平面PBC的垂線,過△PBC的外心作平面PBC的垂線,

設兩條垂線交于點O,O為三棱錐P-ABC外接球的球心.

,,

所以,

所以外接球的半徑R=OA=,

所以三棱錐P-ABC外接球的體積.

故選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節,連排六節,一天課程講座排課有如下要求:“數”必須排在前三節,且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】的內角所對的邊分別是,且的等差中項.

(Ⅰ)求角

(Ⅱ)設,求周長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)討論函數的單調性;

(2)若有兩個極值點,記過點的直線的斜率為,問:是否存在實數,使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的導函數為,且,其中為自然對數的底數.

(1)求函數的最大值;

(2)證明 :.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列滿足,其中,且為常數.

(1)若是等差數列,且公差,求的值;

(2)若,且數列滿足對任意的都成立.

①求數列的前項之和;

②若對任意的都成立,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB=2AA1=2,DAA1的中點,BDAB1交于點O,且CO⊥ABB1A1平面.

1)證明:BC⊥AB1

2)若OC=OA,求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數R.

(1)討論的單調性;

(2)若有兩個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2A33個歐洲國家B1,B2B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视