精英家教網 > 高中數學 > 題目詳情

【題目】關于函數 ,看下面四個結論( ) ①f(x)是奇函數;②當x>2007時, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正確結論的個數為:
A.1個
B.2個
C.3個
D.4個

【答案】A
【解析】解:y=f(x)的定義域為x∈R,且f(﹣x)=f(x),則函數f(x)為偶函數,因此結論①錯. 對于結論②,取特殊值當x=1000π時,x>2007,sin21000π=0,且( 1000π>0
∴f(1000π)= ﹣( 1000π ,因此結論②錯.
對于結論③,f(x)= ﹣( |x|+ =1﹣ cos2x﹣( |x| , ﹣1≤cos2x≤1,
∴﹣ ≤1﹣cos2x≤ ,( |x|>0
故1﹣ cos2x﹣( |x| ,即結論③錯.
對于結論④,cos2x,( |x|在x=0時同時取得最大值,
所以f(x)=1﹣ cos2x﹣( |x|在x=0時可取得最小值﹣ ,即結論④是正確的.
故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】海關對同時從AB、C三個不同地區進口的某種商品進行抽樣檢測,從各地區進口此種商品的數量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進行檢測.

地區

A

B

C

數量

50

150

100

(1)求這6件樣品中來自A、B、C各地區商品的數量;

(2)若在這6件樣品中隨機抽取2件送往甲機構進一步檢測,求這2件商品來自相同地區的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)對任意的實數滿足: ,且當﹣3≤x<﹣1時,f(x)=﹣(x+2)2 , 當﹣1≤x<3時,f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市根據地理位置劃分成了南北兩區,為調查該市的一種經濟作物(下簡稱 作物)的生長狀況,用簡單隨機抽樣方法從該市調查了 500 處 作物種植點,其生長狀況如表:

其中生長指數的含義是:2 代表“生長良好”,1 代表“生長基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.

(1)估計該市空氣質量差的作物種植點中,不絕收的種植點所占的比例;

(2)能否有 99%的把握認為“該市作物的種植點是否絕收與所在地域有關”?

(3)根據(2)的結論,能否提供更好的調查方法來估計該市作物的種植點中,絕收種植點的比例?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某次大型運動會的組委會為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調查發現,男、女志愿者中分別有10人和6人喜愛運動,其余人不喜愛運動.
(1)根據以上數據完成下面2×2列聯表:

喜愛運動

不喜愛運動

總計

10

16

6

14

總計

30


(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與喜愛運動有關系?
(3)已知喜歡運動的女志愿者中恰有4人會外語,如果從中抽取2人負責翻譯工作,那么抽出的志愿者中至少有1人能勝任翻譯工作的概率是多少?
參考公式:K2= ,其中n=a+b+c+d.
參考數據:

P(K2≥k0

0.40

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

若曲線在點處的切線經過點,求實數的值;

若函數在區間上單調,求實數的取值范圍;

,若對 ,使得成立,求整數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中.

(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B﹣ACB1體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在點處的切線與直線平行.

(1)求的值;

(2)若函數在區間上不單調,求實數的取值范圍;

(3)求證:對任意,時,恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,

1)求曲線在點處的切線方程;

2)當時,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视