精英家教網 > 高中數學 > 題目詳情
定義一種運算“*”對于正整數滿足以下運算性質:
(1)2*2006=1;(2)(2n+2)*2006=3•[(2n)*2006],則2008*2006的值是
31003
31003
分析:設(2n)*2006=an,則(2n+2)*2006=an+1,且a1=1,由此知an+1=3an,即(2n)*2006=3n-1,由此能求出2008*2006的值.
解答:解:設(2n)*2006=an
則(2n+2)*2006=an+1,且a1=1,
∴an+1=3an,
∴an=3n-1,
即(2n)*2006=3n-1
∴2008*2006=31003
故答案為:31003
點評:本題考查運算“*”對于正整數滿足的運算性質,解題時要正確理解新定義,合理地運用新定義的性質求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在實數集R中定義一種運算“*”,對任意a,b∈R,a*b為唯一確定的實數,且具有性質:
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關于函數f(x)=(2x)*
1
2x
的性質,有如下說法:
①函數f(x)的最小值為3;
②函數f(x)為奇函數;
③函數f(x)的單調遞增區間為(-∞,-
1
2
),(
1
2
,+∞)

其中所有正確說法的個數為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

定義一種運算“※”,對任意正整數n滿足:(1)1※1=3,(2)(n+1)※1=3+n※1,則2004※1的值為
6012
6012

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•內江二模)在實數集R中定義一種運算“⊕”,對任意a,b⊕b為唯一確定的實數且具有性質:
(1)對任意a,b∈R,有a⊕b=b⊕a;
(2)對任意a∈R,有a⊕0=a;
(3)對任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數f(x)=x⊕
1x
,則下列命題中:
(1)函數f(x)的最小值為3;
(2)函數f(x)為奇函數;
(3)函數f(x)的單調遞增區間為(-∞,-1)、(1,+∞).
其中正確例題的序號有
(3)
(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•內江二模)在實數集R中定義一種運算“⊕”,對任意a,b∈R,a⊕b為唯一確定的實數且具有性質:
(1)對任意a,b∈R,有a⊕b=b⊕a;
(2)對任意a∈R,有a⊕0=a;
(3)對任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數f(x)=x2
1x2
,則下列命題中:
(1)函數f(x)的最小值為3;
(2)函數f(x)為奇函數;
(3)函數f(x)的單調遞增區間為(-1,0)、(1,+∞).
其中正確例題的序號有
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中數學 來源:2013-2014學年山東省青島市高三統一質量檢測考試理科數學試卷(解析版) 題型:選擇題

在實數集中定義一種運算“”,對任意,為唯一確定的實數,且具有性質:

1)對任意,

2)對任意,

關于函數的性質,有如下說法:①函數的最小值為;②函數為偶函數;③函數的單調遞增區間為

其中所有正確說法的個數為( )

A B C D

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视