精英家教網 > 高中數學 > 題目詳情

【題目】某重點中學為了解高一年級學生身體發育情況,對全校700名高一年級學生按性別進行分層抽樣檢查,測得身高(單位:cm)頻數分布表如表1、表2. 表1:男生身高頻數分布表

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

頻數

2

5

14

13

4

2

表2:女生身高頻數分布表

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

頻數

1

7

12

6

3

1


(1)求該校高一女生的人數;
(2)估計該校學生身高在[165,180)的概率;
(3)以樣本頻率為概率,現從高一年級的男生和女生中分別選出1人,設X表示身高在[165,180)學生的人數,求X的分布列及數學期望.

【答案】
(1)解:設高一女學生人數為x,由表1和2可得樣本中男女生人數分別為40,30,

= ,解得x=300.

因此高一女學生人數為300.


(2)解:由表1和2可得樣本中男女生人數分別為:5+14+13+6+3+1=42.樣本容量為70.

∴樣本中該校學生身高在[165,180)的概率= =

估計該校學生身高在[165,180)的概率= .(3)由題意可得:X的可能取值為0,1,2.

由表格可知:女生身高在[165,180)的概率為 .男生身高在[165,180)的概率為


(3)解:∴P(X=0)= = ,P(X=1)= + = ,P(X=2)= =

∴X的分布列為:

X

0

1

2

P

∴E(X)=0+ + =


【解析】(1)設高一女學生人數為x,由表1和2可得樣本中男女生人數分別為40,30,則 = ,解得x.(2)由表1和2可得樣本中男女生人數分別為:5+14+13+6+3+1=42.樣本容量為70.可得樣本中該校學生身高在[165,180)的概率= .即估計該校學生身高在[165,180)的概率.(3)由題意可得:X的可能取值為0,1,2.由表格可知:女生身高在[165,180)的概率為 .男生身高在[165,180)的概率為 .即可得出X的分布列與數學期望.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cosθ﹣2sinθ.
(1)求C的參數方程;
(2)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南宋時期的數學家秦九韶在他的著作《數書九章》中提出了計算多項式f(x)=anxn+an1xn1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an1)x+an2)x+…+a1)x+a0 , 首先計算最內層一次多項式的值,然后由內向外逐層計算一次多項式的值,這種算法至今仍是比較先進的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執行框內應填入(
A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的多面體中,ABCD是平行四邊形,BDEF是矩形,ED⊥面ABCD,∠ABD= ,AB=2AD.
(Ⅰ)求證:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=cos2x圖象向左平移φ(0<φ< )個單位后得到函數g(x)的圖象,若函數g(x)在區間[﹣ , ]上單調遞減,且函數g(x)的最大負零點在區間(﹣ ,0)上,則φ的取值范圍是(
A.[ ]
B.[ ,
C.( , ]
D.[ ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關于x的不等式f(x)<g(x)有解,求實數a的取值范圍;
(Ⅱ)若關于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓F1:(x+1)2+y2=16,定點F2(1,0),A是圓F1上的一動點,線段F2A的垂直平分線交半徑F1A于P點. (Ⅰ)求P點的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個頂點都在曲線C上,且對角線EG,FH過原點O,若kEGkFH=﹣ ,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設已知拋物線C:y2=2px的焦點為F1 , 過F1的直線l與曲線C相交于M,N兩點.
(1)若直線l的傾斜角為60°,且|MN|= ,求p;
(2)若p=2,橢圓 +y2=1上兩個點P,Q,滿足:P,Q,F1三點共線且PQ⊥MN,求四邊形PMQN的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(sinA, )與 =(3,sinA+ )共線,其中A是△ABC的內角.
(1)求角A的大;
(2)若BC=2,求△ABC面積S的最大值,并判斷S取得最大值時△ABC的形狀.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视