【題目】已知函數f(x)=4x﹣a2x+1+a+1,a∈R.
(1)當a=1時,解方程f(x)﹣1=0;
(2)當0<x<1時,f(x)<0恒成立,求a的取值范圍;
(3)若函數f(x)有零點,求實數a的取值范圍.
【答案】
(1)解:a=1時,f(x)=4x﹣22x+2,
f(x)﹣1=(2x)2﹣2(2x)+1=(2x﹣1)2=0,
∴2x=1,解得:x=0
(2)解:4x﹣a(2x+1﹣1)+1>0在(0,1)恒成立,
a(22x﹣1)<4x+1,
∵2x+1>1,
∴a> ,
令2x=t∈(1,2),g(t)= ,
則g′(t)= =
=0,
t=t0,∴g(t)在(1,t0)遞減,在(t0,2)遞增,
而g(1)=2,g(2)= ,
∴a≥2
(3)解:若函數f(x)有零點,
則a= 有交點,
由(2)令g(t)=0,解得:t= ,
故a≥
【解析】(1)將a=的值代入,將2x看作一個整體,解出2x的值,從而求出x的值即可;(2)問題轉化為a> ,令2x=t∈(1,2),g(t)=
,根據函數的單調性求出g(t)的最大值,從而求出a的范圍即可;(3)問題轉化為a=
有交點,根據(2)求出a的范圍即可.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的最大(小)值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知命題R,p:x∈R使 ,命題q:x∈R都有x2+x+1>0,給出下列結論:
①命題“p∧q”是真命題
②命題“命題“p∨q”是假命題
③命題“p∨q”是真命題
④命題“p∨q”是假命題
其中正確的是( )
A.②④
B.②③
C.③④
D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在統計學中,偏差是指個別測定值與測定的平均值之差,在成績統計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數學偏差(單位:分)與物理偏差
(單位:分)之間的關系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數據如下:
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數學偏差 | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差 | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知與
之間具有線性相關關系,求
關于
的線性回歸方程;
(2)若這次考試該班數學平均分為118分,物理平均分為90.5,試預測數學成績126分的同學的物理成績.
參考公式: ,
,
參考數據: ,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質量的要求越來越高,某機構為了解公眾對“車輛限行”的態度,隨機抽查人,并將調查情況進行整理后制成下表:
年齡(歲) | |||||
頻數 | |||||
贊成人數 |
(1)世界聯合國衛生組織規定: 歲為青年,
為中年,根據以上統計數據填寫以下
列聯表:
青年人 | 中年人 | 合計 | |
不贊成 | |||
贊成 | |||
合計 |
(2)判斷能否在犯錯誤的概率不超過的前提下,認為贊成“車柄限行”與年齡有關?
附: ,其中
獨立檢驗臨界值表:
(3)若從年齡的被調查中各隨機選取
人進行調查,設選中的兩人中持不贊成“車輛限行”態度的人員為
,求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.向量 =(a,
b)與
=(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an}滿足:a1=1且a2 , a5 , a14成等比數列.
(1)求數列{an}的通項公式an和前n項和Sn;
(2)證明不等式 且n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高一年級學生參加社區服務次數進行統計,隨機抽取名學生作為樣本,得到這
名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
分組 | 頻數 | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中
的值;
(2)試估計他們參加社區服務的平均次數;
(3)在所取樣本中,從參加社區服務的次數不少于20次的學生中任選2人,求至少1人參加社區服務次數在區間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx﹣2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com