(滿分12分)已知橢圓的一個頂點為B
,離心率
,
直線l交橢圓于M、N兩點.
(Ⅰ)求橢圓的標準方程;
(II)如果ΔBMN的重心恰好為橢圓的右焦點F,求直線的方程.
(1); (2)
.
解析試題分析:(1)由已知,且
,即
,
∴,解得
,∴橢圓的方程標準為
;
(2)橢圓右焦點F的坐標為,
設線段MN的中點為Q,
由三角形重心的性質知,又
,
∴,故得
,
求得Q的坐標為;
設,則
,
且,
以上兩式相減得,
,
故直線MN的方程為,即
.
考點:本題主要考查橢圓的標準方程,橢圓的幾何性質,直線方程。
點評:中檔題,涉及橢圓的題目,在近些年高考題中是屢見不鮮,往往涉及求橢圓標準方程,研究直線與橢圓的位置關系。求橢圓的標準方程,主要考慮定義、a,b,c,e的關系,涉及直線于橢圓位置關系問題,往往應用韋達定理。本題利用“點差法”較方便的得到了直線的斜率,進一步確定得到直線方程。
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓右頂點到直線的距離為
,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負半軸的交點,設直線:
,是否存在實數m,使直線
與(Ⅰ)中的橢圓有兩個不同的交點M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
經過點
其離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
相交于A、B兩點,以線段
為鄰邊作平行四邊形OAPB,其中頂點P在橢圓
上,
為坐標原點.求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知拋物線:
經過橢圓
:
的兩個焦點.設
,又
為
與
不在
軸上的兩個交點,若
的重心(中線的交點)在拋物線
上,
(1)求和
的方程.
(2)有哪幾條直線與和
都相切?(求出公切線方程)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的兩焦點在
軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線
交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,為橢圓
上的一個動點,弦
、
分別過焦點
、
,當
垂直于
軸時,恰好有
(Ⅰ)求橢圓的離心率;
(Ⅱ)設.
①當點恰為橢圓短軸的一個端點時,求
的值;
②當點為該橢圓上的一個動點時,試判斷
是否為定值?
若是,請證明;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com