【題目】某班開展一次智力競賽活動,共a,b,c三個問題,其中題a滿分是20分,題b,c滿分都是25分.每道題或者得滿分,或者得0分.活動結果顯示,全班同學每人至少答對一道題,有1名同學答對全部三道題,有15名同學答對其中兩道題.答對題a與題b的人數之和為29,答對題a與題c的人數之和為25,答對題b與題c的人數之和為20.則該班同學中只答對一道題的人數是;該班的平均成績是 .
【答案】4;42
【解析】解:設xa、xb、xc分別表示答對題a,題b,題c的人數,
則有 ,
解得xa=17,xb=12,xc=8;
∴答對一題的人數為37﹣1×3﹣2×15=4,
全班人數為1+4+15=20;
平均成績為 ×(17×20+12×25+8×25)=42.
所以答案是:4,42.
【考點精析】通過靈活運用平均數、中位數、眾數,掌握⑴平均數、眾數和中位數都是描述一組數據集中趨勢的量;⑵平均數、眾數和中位數都有單位;⑶平均數反映一組數據的平均水平,與這組數據中的每個數都有關系,所以最為重要,應用最廣;⑷中位數不受個別偏大或偏小數據的影響;⑸眾數與各組數據出現的頻數有關,不受個別數據的影響,有時是我們最為關心的數據即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的中心在原點O,左焦點為F1 , 圓O過點F1 , 且與雙曲線的一個交點為P,若直線PF1的斜率為 ,則雙曲線的漸近線方程為( )
A.y=±x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,其中a∈R. (Ⅰ)給出a的一個取值,使得曲線y=f(x)存在斜率為0的切線,并說明理由;
(Ⅱ)若f(x)存在極小值和極大值,證明:f(x)的極小值大于極大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A2n={1,2,3,…,2n}(n∈N* , n≥2).如果對于A2n的每一個含有m(m≥4)個元素的子集P,P中必有4個元素的和等于4n+1,稱正整數m為集合A2n的一個“相關數”. (Ⅰ)當n=3時,判斷5和6是否為集合A6的“相關數”,說明理由;
(Ⅱ)若m為集合A2n的“相關數”,證明:m﹣n﹣3≥0;
(Ⅲ)給定正整數n.求集合A2n的“相關數”m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的單調遞減函數,f′(x)是其導函數,若 >x,則下列不等關系成立的是( )
A.f(2)<2f(1)
B.3f(2)>2f(3)
C.ef(e)<f(e2)
D.ef(e2)>f(e3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點M到點N(1,0)和直線l:x=﹣1的距離相等. (Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)已知不與l垂直的直線l'與曲線E有唯一公共點A,且與直線l的交點為P,以AP為直徑作圓C.判斷點N和圓C的位置關系,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com