精英家教網 > 高中數學 > 題目詳情
已知
sinα+2cos(
2
+α)
cos(π-α)-sin(
π
2
-α)
=-
1
4

(1)求tanα的值;
(2)求(sinα+cosα)2的值.
(1)由已知
sinα+2cos(
2
+α)
cos(π-α)-sin(
π
2
-α)
=
sinα-2sinα
-cosα-cosα
=
1
2
tanα=-
1
4
,
所以tanα=-
1
2

(2)因為tanα+cotα=
1
sinαcosα
,所以sinαcosα=
1
tanα+cotα
=-
2
5
,
所以(sinα+cosα)2=1+2sinαcosα=1+2×(-
2
5
)=
1
5
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數y=sin(2x-
π
6
)圖象的一個對稱中心為點(
π
3
,0);③若函數f(x)在R上滿足f(x+1)=
1
f(x)
,則f(x)是周期為2的函數;④在△ABC中,若
OA
+
OB
=2
CO
,則S△ABC=S△BOC其中正確命題的序號為
 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视