【題目】已知數列的各項均為整數,其前n項和為
.規定:若數列
滿足前r項依次成公差為1的等差數列,從第
項起往后依次成公比為2的等比數列,則稱數列
為“r關聯數列”.
(1)若數列為“6關聯數列”,求數列
的通項公式;
(2)在(1)的條件下,求出,并證明:對任意
,
;
(3)若數列為“6關聯數列”,當
時,在
與
之間插入n個數,使這
個數組成一個公差為
的等差數列,求
,并探究在數列
中是否存在三項
,
,
其中m,k,p成等差數列)成等比數列?若存在,求出這樣的三項;若不存在,說明理由.
【答案】(1)
(2),證明見解析
(3),不存在,理由見解析
【解析】
(1)根據題意得到,
,且
.解得
即可求出
的通項公式.
(2)由(1)得,利用換元法證明數列
的最小項為
,即可證明對任意
,
.
(3)由(1)可知,當時,
,由此可得出
.假設在數列
中存在三項
,
,
(其中
,
,
成等差數列)成等比數列,則
,推導出故
,這與題設矛盾,所以在數列
中不存在三項
,
,
(其中
,
,
成等差數列)成等比數列.
(1)∵為“6關聯數列”,
∴前6項為等差數列,從第5項起為等比數列.
∴,
,且
.
即,解得
.
∴.
(2)由(1)得.
:
,
:
,
:
,
可見數列的最小項為
.
,
由列舉法知:當時,
;
當時,
(
),
設,則
,
.
(3)由(1)可知,當時,
,
因為:,
.
故:.
假設在數列中存在三項
,
,
(其中
,
,
成等差數列)成等比數列,
則:,即:
,
即(*)
因為,
,
成等差數列,所以
,
(*)式可以化簡為,
即:,故
,這與題設矛盾.
所以在數列中不存在三項
,
,
(其中
,
,
成等差數列)成等比數列.
科目:高中數學 來源: 題型:
【題目】已知數列,
為其前
項的和,滿足
.
(1)求數列的通項公式;
(2)設數列的前
項和為
,數列
的前
項和為
,求證:當
,
時
;
(3)已知當,且
時有
,其中
,求滿足
的所有
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:“若,
為異面直線,平面
過直線
且與直線
平行,則直線
與平面
的距離等于異面直線
,
之間的距離”為真命題.根據上述命題,若
,
為異面直線,且它們之間的距離為
,則空間中與
,
均異面且距離也均為
的直線
的條數為( )
A.0條B.1條C.多于1條,但為有限條D.無數多條
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于由有限個自然數組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個數為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).
(1)若A={0,1,2},求S(A),T(A);
(2)若集合A有n個元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數列”;
(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個數最少的集合A.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,且經過點
,它的一個焦點與拋物線E:
的焦點重合,斜率為k的直線l交拋物線E于A、B兩點,交橢圓
于C、D兩點.
(1)求橢圓的方程;
(2)直線l經過點,設點
,且
的面積為
,求k的值;
(3)若直線l過點,設直線
,
的斜率分別為
,
,且
,
,
成等差數列,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了普及環保知識,增強學生的環保意識,在全校組織了一次有關環保知識的競賽,經過初賽、復賽,甲、乙兩個代表隊(每隊人)進入了決賽,規定每人回答一個問題,答對為本隊贏得
分,答錯得
分,假設甲隊中每人答對的概率均為
,乙隊中
人答對的概率分別為
,且各人回答正確與否相互之間沒有影響,用
表示乙隊的總得分.
(1)求的分布列;
(2)求甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題中,真命題是( )
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、
是異面直線,
、
是異面直線,則
、
是異面直線
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com