精英家教網 > 高中數學 > 題目詳情

【題目】橢圓: 的離心率為,拋物線:軸所得的線段長等于.軸的交點為,過點作直線相交于點直線分別與相交于.

(1)求證:;

(2),的面積分別為, ,的取值范圍.

【答案】(1)證明見解析;(2).

【解析】試題分析:

(1)由題意可求得橢圓的方程為.直線的方程為(存在),,.聯立直線方程與拋物線方程可得,,韋達定理計算可得,.

(2)(1)可知均為直角三角形,設直線方程為,與拋物線方程聯立可得,同理可得,.同理求得,,故的取值范圍是[,+∞).

試題解析:

(1)由題設得,,, ,解得.

因此橢圓的方程為.由拋物線的方程為,.

設直線的方程為(存在),,.

于是由消去,,

∴將①代入上式得,

.

(2)(1),,均為直角三角形,設直線方程為,直線方程為,,解得,,同理可得,

.

解得,,

同理可得,

,

又∵>0,.

的取值范圍是[,+∞).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且,.

(1)證明:平面平面;

(2)若二面角是直二面角,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,

(Ⅰ)當 時, 恒成立,求的取值范圍;

(Ⅱ)當 時,研究函數的零點個數;

(Ⅲ)求證: (參考數據: ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長度為的線段的兩個端點、分別在軸和軸上運動,動點滿足,設動點的軌跡為曲線.

(1)求曲線的方程;

(2)過點且斜率不為零的直線與曲線交于兩點、,在軸上是否存在定點,使得直線的斜率之積為常數.若存在,求出定點的坐標以及此常數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設三次函數f(x)=ax3+bx2+cx+1的導函數為f(x)=3ax(x-2),若函數y=f(x)共有三個不同的零點,則a的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)如圖,設直線將坐標平面分成四個區域(不含邊界),若函數的圖象恰好位于其中一個區域內,判斷其所在的區域并求對應的的取值范圍;

(2)當時,求證:,有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知A,B,AB6.AB邊上取點E,使得BE1,連接EC,ED.若∠CEDEC.

(1)sinBCE的值;

(2)CD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數且 )曲線的參數方程為為參數,且),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為: ,曲線的極坐標方程為.

(1)求的交點到極點的距離;

(2)設交于點,交于點,當上變化時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平形四邊形,設,平面,點的中點,且,

(1)若,求二面角的正切值;

(2)是否存在使,若存在求出,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视