精英家教網 > 高中數學 > 題目詳情
已知等差數列{bn}中,,且已知a1=3,a3=9.
(1)求數列{bn}的通項公式;
(2)求數列{an}的通項公式和前n項和Sn
【答案】分析:(1)由題意易得數列{bn}的首項和公差,進而可得通項;(2)由(1)的結論可得數列{an}的通項公式為,由等差和等比數列的求和公式可得答案.
解答:解:(1)設等差數列{bn}的公差為d.由a1=3,a3=9,
得b1=logz(a1-1)=log22=1,b3=log2(a3-1)=log28=3,
∴b3-b1=2=2d,∴d=1,…3 分,
∴bn=1+(n-1)×1=n.…6 分,
(2)由(1)知bn=n,∴log2(an-1)=n,∴,∴.…9 分,


=…11 分,
=2n+1+n-2…12 分.
點評:本題考查等差數列和等比數列的通項公式和求和公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{bn}中,bn=log2(an-1),n∈N*,且已知a1=3,a3=9.
(1)求數列{bn}的通項公式;
(2)求數列{an}的通項公式和前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{bn}的前n項和為Tn,且T4=4,b5=6.
(1)求數列{bn}的通項公式;
(2)若正整數n1,n2,…,nt,…滿足5<n1<n2<…<nt,…且b3,b5,bn1,bn2,…,bnt,…成等比數列,求數列{nt}的通項公式(t是正整數);
(3)給出命題:在公比不等于1的等比數列{an}中,前n項和為Sn,若am,am+2,am+1成等差數列,則Sm,Sm+2,Sm+1也成等差數列.試判斷此命題的真假,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖南師大附中高三(上)第三次月考數學試卷(理科)(解析版) 題型:解答題

設數列{an}的前n項和為Sn,如果為常數,則稱數列{an}為“科比數列”.
(Ⅰ)已知等差數列{bn}的首項為1,公差不為零,若{bn}為“科比數列”,求{bn}的通項公式;
(Ⅱ)設數列{cn}的各項都是正數,前n項和為Sn,若c13+c23+c33+…+cn3=Sn2對任意n∈N*都成立,試推斷數列{cn}是否為“科比數列”?并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视