【題目】如圖,在四棱錐中,平面
平面
,BC//平面PAD,
,
.
求證:(1) 平面
;
(2)平面平面
.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)由BC//平面PAD可得BC//AD,根據線面平行的判定定理可得平面
;(2)過P作PH
AB于H,由條件可得
平面
,從而可證得BC
PH,又BC
PB,故有BC
平面PAB,所以平面PBC
平面PAB .
試題解析:
(1)因為BC//平面PAD,
而BC平面ABCD,平面ABCD
平面PAD = AD,
所以BC//AD ,
又因為AD 平面PBC,BC
平面PBC,
所以平面
(2)過P作PH AB于H,
因為平面
平面
,且平面
平面
=AB,
所以平面
因為BC 平面ABCD,
所以BC PH.
因為
,
所以BC PB,
而,
于是點H與B不重合,即PB PH = H.
因為PB,PH 平面PAB,
所以BC 平面PAB
因為BC 平面PBC,
故平面PBC 平面
AB.
科目:高中數學 來源: 題型:
【題目】假設要考察某公司生產的狂犬疫苗的劑量是否達標,現從500支疫苗中抽取50支進行檢驗,利用隨機數表抽取樣本時,先將500支疫苗按000,001,…,499進行編號,如果從隨機數表第7行第8列的數開始向右讀,請寫出第3支疫苗的編號______________________
(下面摘取了隨機數表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的圖象關于直線
對稱,它的最小正周期是
,則下列說法正確的是______.(填序號)
①的圖象過點
②在
上是減函數
③的一個對稱中心是
④將的圖象向右平移
個單位長度得到函數
的圖象
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國南宋時期著名的數學家秦九韶在其著作《數書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即,其中a、b、c分別為
內角A、B、C的對邊.若
,
,則
面積S的最大值為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”是一個類似計步數據庫的公眾賬號,現從“微信運動”的個好友(男、女各
人)中,記錄了他們某一天的走路步數,并將數據整理如下表:
0-2000步 | 2001-5000步 | 5001-8000步 | 8001-10000步 | >10000步 | |
男(人數) | 2 | 4 | 6 | 10 | 8 |
女(人數) | 1 | 7 | 10 | 9 | 3 |
(1)若某人一天的走路步數超過步被系統評定為“積極型”,否則評定為“懈怠型",根據題意完成下面的
列聯表,并據此判斷能否有
%的把握認為“評定類型"與“性別“有關?
積極型 | 懈怠型 | 總計 | |
男(人數) | |||
女(人數) | |||
總計 |
(2)現從被系統評定為“積極型”好友中,按男女性別分層抽樣,共抽出人,再從這
人中,任意抽出
人發一等獎,求發到一等獎的
中恰有一名女性的概率.
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com