精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax+b,其中a,b為常數,f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,若f3(x)=8x+21,則ab=
6
6
,fn(x)=
2nx+3×2n-3
2nx+3×2n-3
分析:根據題意分別推出f2(x),f3(x)的解析式,又f3(x)=8x+21,根據兩多項式相等時,系數對應相等,即可列出關于a與b的方程,求出方程的解即可得到a與b的值,進而求出ab的值,再根據已知條件求出數列的前幾項,然后總結歸納其中的規律,寫出其通項.
解答:解:由f1(x)=f(x)=ax+b,得到f2(x)=f(f1(x))=a(ax+b)+b=a2x+ab+b,
f3(x)=f(f2(x))=a[a(ax+b)+b]+b=a3x+a2b+ab+b,
即a3=8①,a2b+ab+b=21②,
由①解得:a=2,把a=2代入②解得:b=3,
則ab=6.
從而f(x)=2x+3,f1(x)=f(f(x)),fn(x)=f(fn-1(x))(n∈N*,n≥2),
∴f1(x)=2x+3=21x+3•21-3
f2(x)=4x+9=22x+3•22-3
f3(x)=8x+21=23x+3•23-3

不妨猜想:fn(x)=2nx+3×2n-3
故答案為:6;2nx+3×2n-3.
點評:此題考查學生會根據一系列等式推出一般性的規律,掌握兩多項式相等時滿足的條件,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數中任取一個數,b是從2,3,4,5四個數中任取一個數,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+b的圖象經過點(1,7),又其反函數的圖象經過點(4,0),求函數的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•楊浦區一模)(文)設函數f(x)=ax+1-2(a>1)的反函數為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設函數f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結果,則f(x)的展開式中常數項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视