精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,(其中,為自然對數的底數).

(1)討論函數的單調性;

(2)若分別是的極大值點和極小值點,且,求證:.

【答案】(1)見解析;(2)證明見解析

【解析】

(1)討論,三種情況,分別計算得到答案.

(2)根據題意知等價于,設

,計算得到使,計算得到

得到證明.

(1)當時,,

的單調遞增區間是,單調遞減區間是;

時,,

時,由解得;由解得,的單調遞增區間是,單調遞減區間是

時,由解得;由解得,的單調遞增區間是,單調遞減區間是;

綜上所述:

時,單調遞增區間是,單調遞減區間是;

時,單調遞增區間是,單調遞減區間是;

時,單調遞增區間是,單調遞減區間是

(2)由已知和(1)得,當時滿足題意,此時,

,則.

恒成立,

上單調遞增,

使,即

從而當時, 單調遞減,當時, 單調遞增,

上單調遞減

,

,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業務量統計圖,圖2是該省2018年1~4月快遞業務收入統計圖,下列對統計圖理解錯誤的是( )

A. 2018年1~4月的業務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等比數列{an}中,an>0 (nN ),公比q(0,1),a1a5+2a3a5a2a8=25,又a3a5的等比中項為2.

(1) 求數列{an}的通項公式;

(2) ,數列{bn}的前n項和為Sn,當最大時,求n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知各項均不相等的等差數列{an}的前n項和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項.

(1)求數列{an}的通項公式與前n項和Sn

(2)設Tn為數列{}的前n項和,問是否存在常數m,使Tn=m[],若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,AH是邊BC上的高,點G是△ABC的重心,若△ABC的面積為,AC=,tanC=2,則_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是( )

A.兩條相交直線在同一平面內的射影必為相交直線

B.不共線三點到平面的距離相等,則這三點確定的平面不一定與平面平行

C.對確定的兩異面直線,過空間任一點有且只有一個平面與兩異面直線都平行

D.兩個相交平面的交線是一條線段

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C:的右準線方程為x=2,且兩焦點與短軸的一個頂點構成等腰直角三角形

(1)求橢圓C的方程;

(2)假設直線l與橢圓C交于A,B兩點①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓CN,并且,OB的長②若原點O到直線l的距離為1,并且,當時,求△OAB的面積S的范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市有,兩家乒乓球俱樂部,兩家的設備和服務都很好,但收費標準不同,俱樂部每張球臺每小時5元,俱樂部按月收費,一個月中以內(含)每張球臺90元,超過的部分每張球臺每小時加收2元.某學校準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于,也不超過

1)設在俱樂部租一-張球臺開展活動的收費為,在俱樂部租一張球臺開展活動的收費為,試求的解析式;

2)問選擇哪家俱樂部比較合算?為什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】曾玉、劉云、李夢、張熙四人被北京大學、清華大學、武漢大學和復旦大學錄取,他們分別被哪個學校錄取,同學們做了如下的猜想

甲同學猜:曾玉被武漢大學錄取,李夢被復旦大學錄取

同學乙猜:劉云被清華大學錄取,張熙被北京大學錄取

同學丙猜:曾玉被復旦大學錄取,李夢被清華大學錄取

同學丁猜:劉云被清華大學錄取,張熙被武漢大學錄取

結果,恰好有三位同學的猜想各對了一半,還有一位同學的猜想都不對

那么曾玉、劉云、李夢、張熙四人被錄取的大小可能是(

A.北京大學、清華大學、復旦大學、武漢大學

B.武漢大學、清華大學、復旦大學、北京大學

C.清華大學、北京大學、武漢大學 、復旦大學

D.武漢大學、復旦大學、清華大學、北京大學

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视