精英家教網 > 高中數學 > 題目詳情
函數y=sinx+cos(x-
π6
)
的最大值和最小值分別是
 
分析:利用兩角差的余弦函數,兩角和的正弦函數化簡為
3
sin(x+
π
6
),直接求出函數的最大值和最小值即可.
解答:解:y=sinx+cos(x-
π
6
)
=sinx+
3
2
cosx+
1
2
sinx
=
3
2
sinx+
3
2
cosx=
3
sin(x+
π
6

所以函數的最大值為:
3
;最小值為:-
3

故答案為:
3
-
3
點評:本題是基礎題,考查三角函數的最值,正確應用兩角和與差的正弦、余弦函數公式化簡,以及正弦函數的有界性,靈活解題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

6、函數y=|sinx|-2sinx的值域是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下列結論:
①已知a,b,c為實數,則“b2=ac”是“a,b,c成等比數列”的充要條件; 
②滿足條件a=3,b=2
2
,A=450
的△ABC的個數為2;
③若兩向量
a
=(-2,1),
b
=(λ,-1)
的夾角為鈍角,則實數λ的取值范圍為(-
1
2
,+∞)

④若x為三角形中的最小內角,則函數y=sinx+cosx的值域是(1,
2
]
; 
⑤某廠去年12月份產值是同年一月份產值的m倍,則該廠去年的月平均增長率為
11m
-1
;
則其中正確結論的序號是
④⑤
④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c為互不相等的三個正數,函數f(x)可能滿足如下性質:
①f(x-a)為奇函數;②f(x+a)為奇函數;③f(x-b)為偶函數;④f(x+b)為偶函數.
類比函數y=sinx的對稱中心、對稱軸與周期的關系,某同學得出了如下結論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結論的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在下列哪個區間上,函數y=sinx和y=cosx都是增函數(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若把函數y=sinx的圖象沿x軸向左平移
π
3
個單位,然后再把圖象上每個點的橫坐標伸長到原來的2倍(縱坐標保持不變),得到函數y=f(x)的圖象,則y=f(x)的解析式為( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视