精英家教網 > 高中數學 > 題目詳情

【題目】已知函數是定義在上的偶函數,且當時,.現已畫出函數軸左側的圖象,如圖所示,根據圖象:

(1)請將函數的圖象補充完整并寫出該函數的增區間(不用證明).

(2)求函數的解析式.

(3)若函數,求函數的最小值.

【答案】(1)圖見解析,增區間為(2);(3)

【解析】

1)根據偶函數的圖象關于軸對稱,可作出的圖象,由圖象可得的單調遞增區間;(2)令,則,根據條件可得,利用函數是定義在上的偶函數,可得,從而可得函數的解析式;(3)先求出拋物線對稱軸,然后分當時,當時,當時三種情況,根據二次函數的增減性解答.

解:(1)如圖:

函數的增區間為.

(2)當時,,

又∵上的偶函數,∴,

(3)∵,∴,∴

對稱軸.

,即時,,

,即時,,

,即時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將函數f(x)=cos(ωx+φ)(ω>0,﹣ <φ< )圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移 個單位長度得到y=cosx的圖象,則函數f(x)的單調遞增區間為(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[4kπ﹣ ,kπ﹣ ](k∈Z)
D.[4kπ﹣ ,kπ+ ](k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acosθ(a>0),l: (t為參數)
(1)求曲線C的普通方程,l的直角坐標方程
(2)設l與C交于M,N兩點,點P(﹣2,0),若|PM|,|MN|,|PN|成等比數列,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大;
(Ⅱ)求 sinA+sin(C﹣ )的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的導函數f′(x),滿足(x﹣2)[f′(x)﹣f(x)]>0,且f(4﹣x)=e42xf(x),則下列關于 f(x)的命題正確的是(
A.f(3)>e2f(1)
B.f(3)<ef(2)
C.f(4)<e4f(0)
D.f(4)<e5f(﹣1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知曲線C1的參數方程為 ,(α為參數,且α∈[0,π]),曲線C2的極坐標方程為ρ=﹣2sinθ.
(Ⅰ)求C1的極坐標方程與C2的直角坐標方程;
(Ⅱ)若P是C1上任意一點,過點P的直線l交C2于點M,N,求|PM||PN|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃明年用不超過6千萬元的資金投資于本地養魚場和遠洋捕撈隊.經過本地養魚場年利潤率的調研,得到如圖所示年利潤率的頻率分布直方圖.對遠洋捕撈隊的調研結果是:年利潤率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設該公司投資本地養魚場的資金為x(x≥0)千萬元,投資遠洋捕撈隊的資金為y(y≥0)千萬元.
(1)利用調研數據估計明年遠洋捕撈隊的利潤ξ的分布列和數學期望Eξ.
(2)為確保本地的鮮魚供應,市政府要求該公司對本地養魚場的投資不得低于遠洋捕撈隊的一半.適用調研數據,給出公司分配投資金額的建議,使得明年兩個項目的利潤之和最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,圓C的方程為ρ=4cosθ,以極點為坐標原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l經過點M(5,6),且斜率為
(1)求圓 C的平面直角坐標方程和直線l的參數方程;
(2)若直線l與圓C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖框圖,已知輸出的s∈[0,4],若輸入的t∈[m,n],則實數n﹣m的最大值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视