【題目】已知橢圓,拋物線
焦點均在x軸上,
的中心和
頂點均在原點O,從每條曲線上各取兩個點,將其坐標記錄于表中,則
的左焦點到
的準線之間的距離為( )
3 | -2 | 4 | ||
0 | -4 |
A.B.
C.1D.2
【答案】B
【解析】
由題意可知,橢圓和拋物線的方程都是標準方程,由表格中的數據驗證可知點和點
在拋物線上, 兩個點
在橢圓
上,由此可求得拋物線和橢圓的方程,再求得拋物線的準線和橢圓的左焦點坐標,從而可得答案.
由表格中的數據可知,拋物線的焦點在
軸正半軸上,
設拋物線,
當點在拋物線上時,可得
,解得
,
當點在拋物線上時,可得
,解得
,
當點在拋物線上時,可得
,解得
,
因為這三個點中,有兩個點在拋物線上,所以只能是點和點
在拋物線上,所以
,所以拋物線
的方程為
,其準線方程為
,
所以另外兩個點在橢圓
上,
依題意設橢圓的方程為
,將
代入可得,
,
,解得
,
所以橢圓的方程為
,其左焦點為
,
所以的左焦點到
的準線之間的距離為
,
故選:B.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極坐標建立極坐標系,圓
的極坐標方程為
.
求
的普通方程;
將圓
平移,使其圓心為
,設
是圓
上的動點,點
與
關于原點
對稱,線段
的垂直平分線與
相交于點
,求
的軌跡的參數方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標原點O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F兩點,圓O內的動點D使得DE,DO,DF成等比數列,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種設備隨著使用年限的增加,每年的維護費相應增加.現對一批該設備進行調查,得到這批設備自購入使用之日起,前5年平均每臺設備每年的維護費用大致如表:
年份 | |||||
維護費 |
(I)從這年中隨機抽取兩年,求平均每臺設備每年的維護費用至少有
年多于
萬元的概率;
(II)求關于
的線性回歸方程;若該設備的價格是每臺
萬元,你認為應該使用滿五年換一次設備,還是應該使用滿八年換一次設備?并說明理由.
參考公式:用最小二乘法求線性回歸方程的系數公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系中,曲線
的參數方程為
(
為參數),以原點
為極點,
軸正半軸為極軸建立極坐標系,
點的極坐標為
,斜率為
的直線
經過點
.
(I)求曲線的普通方程和直線
的參數方程;
(II)設直線與曲線
相交于
,
兩點,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國經濟實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現翻番.同時該家庭的消費結構隨之也發生了變化,現統計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:
則下列結論中正確的是( )
A. 該家庭2018年食品的消費額是2014年食品的消費額的一半
B. 該家庭2018年教育醫療的消費額與2014年教育醫療的消費額相當
C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍
D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數據的平均數和中位數;
(3)已知滿意度評分值在內的男生數與女生數3:2,若在滿意度評分值為
的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com