精英家教網 > 高中數學 > 題目詳情

【題目】(多選)已知函數,其中正確結論的是( )

A.時,函數有最大值.

B.對于任意的,函數一定存在最小值.

C.對于任意的,函數上的增函數.

D.對于任意的,都有函數.

【答案】BC

【解析】

根據函數的單調性,導數和函數的最值的關系,逐項判斷,即可求得答案.

對于A,時,函數,根據指數單調性可知,此時是單調增函數,故無最大值,A錯誤;

對于B,對于任意的,

,易知是在單調增函數,

,

,

存在

, ,單調遞減

, ,單調遞增

B正確;

對于C,對于任意的,

函數

, ,

可得:,

故函數上的增函數.

C正確;

對于D,對于任意的,

函數

, ,

可得:,

故函數上的增函數.

,,,

可得:,D錯誤.

故選:BC.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數上的最大值;

(2)令,若在區間上為單調遞增函數,求的取值范圍;

(3)當 時,函數 的圖象與軸交于兩點 ,且 ,又的導函數.若正常數 滿足條件.證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)ax(ab∈Z),曲線yf(x)在點(2,f(2))處的切線方

程為y3.

(1)f(x)的解析式;

(2)證明:曲線yf(x)上任一點的切線與直線x1和直線yx所圍三角形的面積為定值,

并求出此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為研究女高中生身高與體重之間的關系,一調查機構從某中學中隨機選取8名女高中生,其身高和體重數據如下表所示:

編號

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

體重

60

46

43

48

48

50

61

52

該調查機構繪制出該組數據的散點圖后分析發現,女高中生的身高與體重之間有較強的線性相關關系.

1)調查員甲計算得出該組數據的線性回歸方程為,請你據此預報一名身高為的女高中生的體重;

2)調查員乙仔細觀察散點圖發現,這8名同學中,編號為14的兩名同學對應的點與其他同學對應的點偏差太大,于是提出這樣的數據應剔除,請你按照這名調查人員的想法重新計算線性回歸話中,并據此預報一名身高為的女高中生的體重;

3)請你分析一下,甲和乙誰的模型得到的預測值更可靠?說明理由.

附:對于一組數據,其回歸方程的斜率和截距的最小二乘法估計分別為:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 .

(1)若上的增函數,求的取值范圍;

(2)若函數有兩個極值點,判斷函數零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓,定義橢圓的“相關圓”方程為.若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構成直角三角形.

(1)求橢圓的方程和“相關圓”的方程;

(2)過“相關圓”上任意一點的直線與橢圓交于兩點.為坐標原點,若,證明原點到直線的距離是定值,并求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側面,,楔面是邊長為2的正三角形,點在側面的射影是矩形的中心,點上,且

1)證明:平面;

2)求楔面與側面所成二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓x2+y2=8內有一點P0-1,2),AB為過點P0且傾斜角為α的弦.

1)當α=時,求AB的長;

2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中錯誤的是(

A.命題,則的逆否命題是真命題

B.命題,的否定是

C.為真命題,則為真命題

D.中,的充要條件

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视