精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}是遞增的等比數列,且a1+a4=9,a2a3=8.
(1)求數列{an}的通項公式;
(2)設Sn為數列{an}的前n項和,bn= ,求數列{bn}的前n項和Tn

【答案】
(1)解:∵數列{an}是遞增的等比數列,且a1+a4=9,a2a3=8.

∴a1+a4=9,a1a4=a2a3=8.

解得a1=1,a4=8或a1=8,a4=1(舍),

解得q=2,即數列{an}的通項公式an=2n1


(2)解:Sn= =2n﹣1,

∴bn= = = ,

∴數列{bn}的前n項和Tn= +…+ = =1﹣


【解析】(1)根據等比數列的通項公式求出首項和公比即可,求數列{an}的通項公式;(2)求出bn= ,利用裂項法即可求數列{bn}的前n項和Tn

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數f(x)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sinx的圖象上所有的點向右平行移動 個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數解析式是(
A.y=sin(2x
B.y=sin(2x
C.y=sin( x
D.y=sin( x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】底面是正多邊形,頂點在底面的射影是底面中心的棱錐叫正棱錐.已知同底的兩個正三棱錐內接于同一個球.已知兩個正三棱錐的底面邊長為a,球的半徑為R.設兩個正三棱錐的側面與底面所成的角分別為α、β,則tan(α+β)的值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足cos = ,bccosA=3. (Ⅰ)求△ABC的面積;
(Ⅱ)若 ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點( ,m),延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求實數a的值;
(Ⅱ)若p是q的充分條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: + =1(a>0,b>0)的離心率為 ,F是橢圓E的右焦點,直線AF的斜率為 ,O是坐標原點.
(1)求E的方程;
(2)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等差數列{an}中,a2+a7=﹣23,a3+a8=﹣29. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列{an+bn}是首項為1,公比為c的等比數列,求{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视