【題目】若函數f(x)=loga(x+ )是奇函數,則a= .
科目:高中數學 來源: 題型:
【題目】設命題p:f(x)= 在區間(1,+∞)上是減函數;命題q;x1x2是方程x2﹣ax﹣2=0的兩個實根,不等式m2+5m﹣3≥|x1﹣x2|對任意實數α∈[﹣1,1]恒成立;若¬p∧q為真,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小張在淘寶網上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網上的其它網店,發現:A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數,且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關于售價x(元)(x∈Z+)的函數關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲等費用)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有(n≥2,n∈N*)個給定的不同的數隨機排成一個下圖所示的三角形數陣:
設Mk是第k行中的最大數,其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn.
(1)求p2的值;
(2)證明:pn>.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當a=90時,求紙盒側面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點E.
(1)若D為AC的中點,證明:DE是⊙O的切線;
(2)若OA= CE,求∠ACB的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于R上的可導函數f(x),若a>b>1且有(x﹣1)f′(x)≥0,則必有( )
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:設為
上的可導函數,若
為增函數,則稱
為
上的凸函數.
(1)判斷函數與
是否為凸函數;
(2)設為
上的凸函數,求證:若
,
,則
恒有
成立;
(3)設,
,
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了體現國家“民生工程”,某市政府為保障居民住房,現提供一批經濟適用房.現有條件相同的甲、已、丙、丁四套住房供A、B、C三人自主申請,他們的申請是相互獨立的.
(1)求A、B兩人都申請甲套住房的概率;
(2)求A、B兩人不申請同一套住房的概率;
(3)設3名參加選房的人員中選擇甲套住房的人數為ξ,求ξ的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com