【題目】已知曲線在點
處的切線
平行直線
,且點
在第三象限.
(1)求的坐標;
(2)若直線, 且
也過切點
,求直線
的方程.
【答案】(1)(2)
【解析】試題分析:(1)根據曲線方程求出導函數,因為已知橫線的斜率為,根據切線與已知直線平行得到斜率都為
,所以令導函數等于
得到關于
的方程,求出方程的接,即為切點的橫坐標,代入曲線方程即可求解切點的縱坐標,又因為切點在第三象限,進而寫出滿足條件的切點坐標;(2)由直線
的斜率為
,根據兩直線垂直時斜率乘積為
,得出直線
的斜率為
,又根據(1)中求得切點坐標,寫出直線
的方程即可.
試題解析:⑴由y=x3+x-2,得y′=3x2+1,
由已知得3x2+1=4,解之得x=±1.當x=1時,y=0;當x=-1時,y=-4.
又∵點P0在第三象限,
∴切點P0的坐標為 (-1,-4).
⑵∵直線,
的斜率為4,∴直線l的斜率為
,
∵l過切點P0,點P0的坐標為 (-1,-4)
∴直線l的方程為即
.
科目:高中數學 來源: 題型:
【題目】某班同學利用國慶節進行社會實踐,對[25,55]歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳族的人數 | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | 0.4 | |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55] | 15 | 0.3 |
(1)補全頻率分布直方圖并求 的值;
(2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[4,45)歲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數
,若滿足①
;②當
,且
時,都有
;③當
,且
時,
,則稱
為“偏對函數”.現給出四個函數:
;
. 則其中是“偏對稱函數”的函數個數為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
。在以原點
為極點,
軸正半軸為極軸的極坐標系中,圓
的方程為
。
(1)寫出直線的普通方程和圓
的直角坐標方程;
(2)若點P坐標為,圓
與直線
交于
兩點,求
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,滿足a1=3,a4=12,數列{bn}滿足b1=4,b4=20,且{bn-an}為等比數列.
(1)求數列{an}和{bn}的通項公式;
(2)求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知某曲線C的極坐標方程為,直線
的極坐標方程為
(1)求該曲線C的直角坐標系方程及離心率
(2)已知點為曲線C上的動點,求點
到直線
的距離的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市化工廠三個車間共有工人1 000名,各車間男、女工人數如下表:
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機抽取1名,抽到第二車間男工的可能性是0. 15.
(1)求x的值;
(2)現用分層抽樣的方法在全廠抽取50名工人,問應在第三車間抽取多少名?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在點
處的切線與直線
垂直.(注:
為自然對數的底數)
(1)求的值;
(2)若函數在區間
上存在極值,求實數
的取值范圍;
(3)求證:當時,
恒成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com