精英家教網 > 高中數學 > 題目詳情
(2013•寧波二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,設函數f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數f(x)的最小正周期和最大值;
(Ⅱ)若函數f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.
分析:(Ⅰ)利用兩角和差的正弦公式、余弦公式化簡函數f(x)的解析式為
1
2
cos(2x-A)
,由此可求它的最大值.
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,求得A的值,再利用正弦定理及兩角和差的正弦公式、余弦公式,化簡要求的式子,求得結果.
解答:解:(Ⅰ)依題意得f(x)=cos2xcosA+cosxsinxsinA-
1
2
cosA
…(2分)
=
1
2
(cos2x•cosA+sin2x•sinA)
=
1
2
cos(2x-A)
,…(5分)
所以T=π,(f(x))max=
1
2
.…(7分)
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,得A=
3
-2kπ∈(0,π)

所以A=
3

a(cosB+cosC)
(b+c)sinA
=
cosB+cosC
sinB+sinC
=
cos(
π
3
-C)+cosC
sin(
π
3
-C)+sinC
=
3
2
cosC+
3
2
sinC
3
2
cosC+
1
2
sinC
=
3
.…(14分)
點評:本題主要考查兩角和差的正弦公式、余弦公式,正弦定理以及二倍角公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•寧波二模)設公比大于零的等比數列{an}的前n項和為Sn,且a1=1,S4=5S2,數列{bn}的前n項和為Tn,滿足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求數列{an}、{bn}的通項公式;
(Ⅱ)設Cn=(Sn+1)(nbn-λ),若數列{Cn}是單調遞減數列,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)設函數f(x)的導函數為f′(x),對任意x∈R都有f′(x)>f(x)成立,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)已知函數f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)當a=-
1
4
時,求函數y=f(x)的單調區間;
(Ⅱ)當x∈[1,+∞)時,函數y=f(x)圖象上的點都在不等式組
x≥1
y≤x-1
所表示的區域內,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)如圖是某學校抽取的n個學生體重的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,第3個小組的頻數為18,則的值n是
48
48

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•寧波二模)已知兩非零向量
a
,
b
,則“
a
b
=|
a
||
b
|”是“
a
b
共線”的( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视