精英家教網 > 高中數學 > 題目詳情

【題目】把函數f(x)=cos2 x﹣ )的圖象向左平移 個單位后得到的函數為g(x),則以下結論中正確的是(
A.g( )>g( )>0
B.g( ??
C.g( )>g( )>0
D.g( )=g( )>0

【答案】A
【解析】解:把函數f(x)=cos2 x﹣ )= 的圖象向左平移 個單位后, 得到的函數為g(x)= = 的圖象,
故有g( )= + cos = +cos( )= +sin ,g( )= +cos = ﹣cos = ﹣cos( + )= +sin ,
而sin >sin >0,∴g( )>g( )>0,
故選:A.
【考點精析】掌握函數y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】鷹潭市龍虎山花語世界位于中國第八處世界自然遺產,世界地質公元、國家自然文化雙遺產地、國家AAAAA級旅游景區﹣﹣龍虎山主景區排衙峰下,是一座獨具現代園藝風格的花卉公園,園內匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經典園林風格,景觀設計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應又自成一體,是世界園藝景觀的大展示.該景區自2015年春建成試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數最高達萬人. 某學校社團為了解進園旅客的具體情形以及采集旅客對園區的建議,特別在2017年4月1日賞花旺季對進園游客進行取樣調查,從當日12000名游客中抽取100人進行統計分析,結果如下:(表一)

年齡

頻數

頻率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合計

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答題卡中補全頻率分布直方圖,并估計2017年4月1日當日接待游客中30歲以下人數.
(2)完成表格二,并問你能否有97.5%的把握認為在觀花游客中“年齡達到50歲以上”與“性別”相關?
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調查的100位游客中的10人作為幸運游客免費領取龍虎山內部景區門票,再從這10人中選取2人接受電視臺采訪,設這2人中年齡在50歲以上(含)的人數為ξ,求ξ的分布列 (表二)

50歲以上

50歲以下

合計

男生

5

40

45

女生

15

40

55

合計

20

80

100

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:k2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運動是否與性別有關,某體育臺隨機抽取100名觀眾進行統計,得到如下列聯表.

(1)將列聯表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜愛足球運動與性別有關?

(2)在不喜愛足球運動的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機抽取2人參加一臺訪談節目,求這2人至少有一位男性的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司按現有能力,每月收入為70萬元,公司分析部門測算,若不進行改革,入世后因競爭加劇收入將逐月減少.分析測算得入世第一個月收入將減少3萬元,以后逐月多減少2萬元,如果進行改革,即投入技術改造300萬元,且入世后每月再投入1萬元進行員工培訓,則測算得自入世后第一個月起累計收入與時間(以月為單位)的關系為,且入世第一個月時收入將為90萬元,第二個月時累計收入為170萬元,問入世后經過幾個月,該公司改革后的累計純收入高于不改革時的累計純收入.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓C: =1(a>b>0)的離心率為 ,過右焦點F2(c,0)垂直于x軸的直線與橢圓交于A,B兩點且|AB|= ,又過左焦點F1(﹣c,0)任作直線l交橢圓于點M
(1)求橢圓C的方程
(2)橢圓C上兩點A,B關于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高一(1)(2)兩個班聯合開展“詩詞大會進校園,國學經典潤心田”古詩詞競賽主題班會活動,主持人從這兩個班分別隨機選出20名同學進行當場測試,他們的測試成績按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統計如圖(單位:分):
高一(2)班20名學生成績莖葉圖:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分別計算兩個班這20名同學的測試成績在[80,90)的頻率,并補全頻率分布直方圖;
(Ⅱ)分別從兩個班隨機選取1人,設這兩人中成績在[80,90)的人數為X,求X的分布列(頻率當作概率使用).
(Ⅲ)運用所學統計知識分析比較兩個班學生的古詩詞水平.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是拋物線C:y2=2px(p>0)上的點,F是拋物線C的焦點,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,則拋物線C的方程為(
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定實數 t,已知命題 p:函數 有零點;命題 q: x∈[1,+∞) ≤4-1.

(Ⅰ)當 t=1 時,判斷命題 q 的真假;

(Ⅱ)若 pq 為假命題,求 t 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業有兩個分廠生產某種零件,按規定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:

甲廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數

12

63

86

182

92

61

4

乙廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數

29

71

85

159

76

62

18

(1)試分別估計兩個分廠生產的零件的優質品率;

(2)由以上統計數據填下面列聯表,并問是否有的把握認為“兩個分廠生產的零件的質量有差異”.

甲 廠

乙 廠

合計

優質品

非優質品

合計

附:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视