【題目】設f(x)是定義在R上且周期為2的函數,在區間[﹣1,1]上,f(x)= 其中a,b∈R.若
=
,則a+3b的值為 .
科目:高中數學 來源: 題型:
【題目】如圖所示,定義域為上的函數
是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.
(1)求的解析式;
(2)若關于的方程
有三個不同解,求
的取值范圍;
(3)若,求
的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,假命題為( )
A.存在四邊相等的四邊形不是正方形
B.z1 , z2∈C,z1+z2為實數的充分必要條件是z1 , z2互為共軛復數
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N* , +
+…+
都是偶數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現統計了連續5天的售出礦泉水箱數和收入情況,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
學校計劃將捐款以獎學金的形式獎勵給品學兼優的特困生,規定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.
(1)若與
成線性相關,則某天售出9箱水時,預計收入為多少元?
(2)甲乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為
,不獲得獎學金的概率均為
,已知甲乙兩名學生獲得哪個等級的獎學金相互獨立,求甲乙兩名學生所獲得獎學金之和
的分布列及數學期望;
附:回歸方程,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三點O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點M(x,y)滿足| +
|=
(
+
)+2.
(1)求曲線C的方程;
(2)動點Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點Q處的切線為直線l:是否存在定點P(0,t)(t<0),使得l與PA,PB都相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數?若存在,求t的值.若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一位同學家里開了一個小賣部,他為了研究氣溫對熱茶銷售的影響,經過統計,得到一個賣出熱茶杯數與當天氣溫的對比表如下:
氣溫x/℃ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱茶銷售杯數y/杯 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)畫出散點圖;
(2)你能從散點圖中發現氣溫與熱茶的銷售杯數之間關系的一般規律嗎?
(3)如果近似成線性關系的話,請畫出一條直線來近似地表示這種線性關系;
(4)試求出回歸直線方程;
(5)利用(4)的回歸方程,若某天的氣溫是2 ℃,預測這一天賣出熱茶的杯數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當兩條棱相交時,ξ=0;當兩條棱平行時,ξ的值為兩條棱之間的距離;當兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數學期望E(ξ).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com