【題目】已知l,m是平面外的兩條不同直線.給出下列三個論斷:
①l⊥m;②m∥;③l⊥
.
以其中的兩個論斷作為條件,余下的一個論斷作為結論,則三個命題中正確命題的個數為( )個.
A.0B.1C.2D.3
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為
、
,
、
分別是雙曲線左、右兩支上關于坐標原點
對稱的兩點,且直線
的斜率為
.
、
分別為
、
的中點,若原點
在以線段
為直徑的圓上,則雙曲線的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地擬建立一個藝術博物館,采取競標的方式從多家建筑公司選取一家建筑公經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現從建筑設計院聘請專家計了一個招標方案:兩家公司從6個招標問題中隨機拋取3個問題,已知這6個問中,甲公司可正確回答其中的4道題,而乙公司能正確回答每道題目的概率均為,且甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.
(I)求甲、乙兩家公司共答對2道題的概率;
(II)設X為乙公司正確回答的題數,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知四邊形BCDE為直角梯形,,
,且
,A為BE的中點
將
沿AD折到
位置
如圖
,連結PC,PB構成一個四棱錐
.
Ⅰ
求證
;
Ⅱ
若
平面ABCD.
求二面角
的大。
在棱PC上存在點M,滿足
,使得直線AM與平面PBC所成的角為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題不正確的是( 。
A.研究兩個變量相關關系時,相關系數r為負數,說明兩個變量線性負相關
B.研究兩個變量相關關系時,相關指數R2越大,說明回歸方程擬合效果越好.
C.命題“x∈R,cosx≤1”的否定命題為“x0∈R,cosx0>1”
D.實數a,b,a>b成立的一個充分不必要條件是a3>b3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com