精英家教網 > 高中數學 > 題目詳情
(2013•梅州一模)(
x
-
2
x
)9
展開式中的常數項為
-672
-672
分析:通過二項展開式的通項公式求出展開式的通項,利用x的指數為0,求出展開式中常數項
解答:解:(
x
-
2
x
)9
展開式中的常數項為Tr+1=
C
r
9
(
x
)9-r(-
2
x
)r
=
C
r
9
2rx
9-3r
2
×(-1)r
9-3r=0可得r=3
此時常數項為T4=
23C
3
9
×(-1)=-672
故答案為:-672
點評:本題是基礎題,考查利用二項展開式的通項公式解決二項展開式的特定項問題.考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•梅州一模)設f(x)與g(x)是定義在同一區間[a,b]上的兩個函數,若函數y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關聯函數”,區間[a,b]稱為“關聯區間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關聯函數”,則m的取值范圍為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調函數.如果定義域為R的函數f(x)是奇函數,當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調函數,那么實數a的取值范圍是
[-
2
,
2
]
[-
2
,
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)設等比數列{an}的公比q=2,前n項和為Sn,則
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)已知雙曲線
x2
a2
-
y2
b2
 =1(a>b>0)
的兩條漸近線的夾角為
π
3
,則雙曲線的離心率為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•梅州一模)某工廠在試驗階段大量生產一種零件,這種零件有甲、乙兩項技術指標需要檢測,設各項技術指標達標與否互不影響,按質量檢驗規定:兩項技術指標都達標的零件為合格品,為估計各項技術的達標概率,現從中抽取1000個零件進行檢驗,發現兩項技術指標都達標的有600個,而甲項技術指標不達標的有250個.
(1)求一個零件經過檢測不為合格品的概率及乙項技術指標達標的概率;
(2)任意抽取該零件3個,求至少有一個合格品的概率;
(3)任意抽取該種零件4個,設ξ表示其中合格品的個數,求隨機變量ξ的分布列.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视