【題目】已知直線的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,且曲線
的左焦點
在直線
上.
(Ⅰ)求的極坐標方程和曲線
的參數方程;
(Ⅱ)求曲線的內接矩形的周長的最大值.
科目:高中數學 來源: 題型:
【題目】改革開放以來,人們的支付方式發生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數;
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用B的學生中隨機抽查1人,發現他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
,…,
為取自某總體的樣本,其算術平均值稱為樣本均值,一般用
表示,即
,在分組樣本場合,樣本均值的近似公式為
,其中k為組數,
為第i組的組中值,
為第i組的頻數.某單位收集到20名青年的某天娛樂支出費用數據:
79 84 84 88 92 93 94 97 98 99
100 101 101 102 102 108 110 113 118 125
若將分為五組,第一組為,根據分組樣本計算樣本均值為( )
A.99.4B.143.16C.100D.11.96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,
,數列
滿足
,n
.
(1)若,
,求數列
的前2n項和
;
(2)若數列為等差數列,且對任意n
,
恒成立.
①當數列為等差數列時,求證:數列
,
的公差相等;
②數列能否為等比數列?若能,請寫出所有滿足條件的數列
;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列判斷錯誤的是( )
A.若隨機變量服從正態分布
,則
B.已知直線平面
,直線
平面
,則“
”是“
”的充分不必要條件
C.若隨機變量服從二項分布:
, 則
D.是
的充分不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度.某地區在2015 年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占 2019 年貧困戶總數的比)及該項目的脫貧率見下表:
實施項目 | 種植業 | 養殖業 | 工廠就業 | 服務業 |
參加用戶比 | ||||
脫貧率 |
那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )
A.倍B.
倍C.
倍D.
倍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在世界讀書日期間,某地區調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮居民有100人,農村居民有30人.
(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?
城鎮居民 | 農村居民 | 合計 | |
經常閱讀 | 100 | 30 | |
不經常閱讀 | |||
合計 | 200 |
(2)從該地區城鎮居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量
的期望.
附:,其中
.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】BMI指數是用體重公斤數除以身高米數的平方得出的數值,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當BMI數值大于或等于20.5時,我們說體重較重,當BMI數值小于20.5時,我們說體重較輕,身高大于或等于170cm時,我們說身高較高,身高小于170cm時,我們說身高較矮.某中小學生成長與發展機構從某市的320名高中男體育特長生中隨機選取8名,其身高和體重的數據如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
(1)根據最小二乘法的思想與公式求得線性回歸方程.利用已經求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預報變量(體重)變化的貢獻值
(保留兩位有效數字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 | ﹣1.5 | ﹣0.5 |
(2)通過殘差分析,對于殘差的最大(絕對值)的那組數據,需要確認在樣本點的采集中是否有人為的錯誤.已知通過重新采集發現,該組數據的體重應該為58(kg).請重新根據最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
參考公式: ,
.
.
參考數據:,
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知都是各項不為零的數列,且滿足
其中
是數列
的前
項和,
是公差為
的等差數列.
(1)若數列是常數列,
,
,求數列
的通項公式;
(2)若是不為零的常數),求證:數列
是等差數列;
(3)若(
為常數,
),
.求證:對任意
的恒成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com