精英家教網 > 高中數學 > 題目詳情

【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知曲線的極坐標方程為,曲線的參數方程為為參數,),射線,分別與曲線交于極點外的三點.

1)求的值;

2)當時,兩點在曲線上,求的值.

【答案】1;(2,

【解析】

1)利用極坐標表示出,然后將轉化為極徑,根據對應的極徑即可計算出的值;

2)先求解出的極坐標將其轉化為直角坐標可求斜率,由此先求解出傾斜角的值,再根據點在線上代入求解出的值即可.

1)設點的極坐標分別為,,,

由點在曲線上得:,,

所以,,

所以;

2)由曲線的參數方程知,曲線是傾斜角為且過定點的直線,

時,兩點的極坐標分別為,,化為直角坐標為,,

所以,直線的斜率為,所以,

又因為直線的方程為:

由點在直線上得:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.

(1)求證:平面;

(2)點在線段上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓的直徑,為圓周上不與點重合的點,垂直于圓所在的平面,

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,討論函數的單調性;

2)若曲線在點處的切線有且只有一個公共點,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數,.

1)求函數的零點個數;

2)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.

1)求甲、乙、丙三名同學都選高校的概率;

2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.

i)求甲同學選高校且乙、丙都未選高校的概率;

ii)記為甲、乙、丙三名同學中選高校的人數,求隨機變量的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征()等較嚴重疾病.而今年出現在湖北武漢的新型冠狀病毒()是以前從未在人體中發現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.

某醫院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有n)份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗n.

方式二:混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗.

若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為.

假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p.現取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.

1)若,試求p關于k的函數關系式;

2)若p與干擾素計量相關,其中)是不同的正實數,

滿足)都有成立.

i)求證:數列等比數列;

ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數的期望值更少,求k的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,bc,cosB

(Ⅰ)若c=2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究日平均走步數和性別是否有關,統計了20191月份所有用戶的日平均步數,規定日平均步數不少于8000的為運動達人,步數在8000以下的為非運動達人,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯表:

運動達人

非運動達人

總計

35

60

26

總計

100

1)(i)將列聯表補充完整;

ii)據此列聯表判斷,能否有的把握認為日平均走步數和性別是否有關

2)從樣本中的運動達人中抽取7人參加幸運抽獎活動,通過抽獎共產生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.

附:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视