精英家教網 > 高中數學 > 題目詳情

已知n≥2且n∪N*,對n2進行如下方式的“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么361的“分拆”所得的數的中位數是

[  ]

A.19

B.21

C.29

D.361

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•黃浦區一模)已知a<b,且a2-a-6=0,b2-b-6=0,數列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數列{bn}是等比數列;
(2)已知數列{cn}滿足cn=
an3n
(n∈N*),試建立數列{cn}的遞推公式(要求不含an或bn);
(3)若數列{an}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數學 來源:浙江省寧波市八校2011-2012學年高二下學期期末聯考數學理科試題 題型:013

已知n≥2且n∈N*,對n2進行如下方式的“分拆”:22→(1,3),32→(1,3,5),42→(1,3,5,7),…,那么361的“分拆”所得的數的中位數是

[  ]

A.19

B.21

C.29

D.361

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a<b,且a2-a-6=0,b2-b-6=0,數列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數列{bn}是等比數列;
(2)已知數列{cn}滿足cn=數學公式(n∈N*),試建立數列{cn}的遞推公式(要求不含an或bn);
(3)若數列{an}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數學 來源:2012年上海市黃浦區高考數學一模試卷(文科)(解析版) 題型:解答題

已知a<b,且a2-a-6=0,b2-b-6=0,數列{an}、{bn}滿足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求證數列{bn}是等比數列;
(2)已知數列{cn}滿足cn=(n∈N*),試建立數列{cn}的遞推公式(要求不含an或bn);
(3)若數列{an}的前n項和為Sn,求Sn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视