【題目】如圖,三棱錐,側棱
,底面三角形
為正三角形,邊長為
,頂點
在平面
上的射影為
,有
,且
.
(Ⅰ)求證: 平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點
使得
⊥平面
,如果存在,求
的值;如果不存在,請說明理由.
【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.
【解析】試題分析:(1)證線面平行,則要在平面找一線與之平行即可,顯然分析
即得證,(2)求二面角可借助空間直角坐標系將兩個平面的法向量一一求出,再根據向量的數量積公式便可求解(3)存在問題可以根據結論反推即可,容易得因為
,所以
與
不垂直,故不存在
試題解析:
(Ⅰ)因為,且
,
,所以
,
所以.
因為為正三角形,所以
,
又由已知可知為平面四邊形,所以
.
因為平面
,
平面
,
所以平面
.
(Ⅱ)由點在平面
上的射影為
可得
平面
,
所以,
.
以分別為
建立空間直角坐標系,則由已知可知
,
,
,
.
平面的法向量
,
設為平面
的一個法向量,則
由可得
令,則
,所以平面
的一個法向量
,
所以,
所以二面角的余弦值為
.
(Ⅲ)由(Ⅱ)可得,
,
因為,
所以與
不垂直,
所以在線段上不存在點
使得
⊥平面
.
科目:高中數學 來源: 題型:
【題目】某單位附近只有甲、乙兩個臨時停車場,它們各有個車位,為了方便市民停車,某互聯網停車公司對這兩個停車場,在某些固定時刻的剩余停車位進行記錄,如下表:
時間 停車場 |
|
|
|
|
|
|
甲停車場 | ||||||
乙停車場 |
如果表中某一時刻剩余停車位數低于該停車場總車位數的,那么當車主驅車抵達單位附近時,該公司將會向車主發出停車場飽和警報.
(1)假設某車主在以上六個時刻抵達單位附近的可能性相同,求他收到甲停車場飽和警報的概率;
(2)從這六個時刻中任選一個時刻,求甲停車場比乙停車場剩余車位數少的概率;
(3)當乙停車場發出飽和警報時,求甲停車場也發出飽和警報的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,底面
為矩形,
,
.點
在棱
上,平面
與棱
交于點
.
(Ⅰ)求證: ;
(Ⅱ)求證:平面平面
;
(Ⅲ)若,
,
,平面
平面
,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一批材料可以建成100m長的圍墻,現用這些材料在一邊靠墻的地方圍成一塊封閉的矩形場地,中間隔成3個面積相等的小矩形(如圖),則圍成的矩形場地的最大總面積為(圍墻厚度忽略不計)m2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為
的正方形,
底面
,
分別為
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)若,試問在線段
上是否存在點
,使得二面角
的余弦值為
?若存在,確定點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)拋物線的頂點在原點,坐標軸為對稱軸,并經過點,求此拋物線的方程.
(Ⅱ)已知圓: (
),把圓上的各點縱坐標不變,橫坐標伸長到原來的
倍得一橢圓.求橢圓方程,并證明橢圓離心率是與
無關的常數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】斐波那契數列滿足:
.若將數列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前
項所占的格子的面積之和為
,每段螺旋線與其所在的正方形所圍成的扇形面積為
,則下列結論錯誤的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com