(本小題滿分14分)
在如圖所示的多面體中,⊥平面
,
,
,
,
,
,
,
是
的中點.
(1)求證:;
(2)求平面與平面
所成銳二面角的余弦值.
(1) 解法1
證明:∵平面
,
平面
,
∴,
又,
平面
,
∴平面
. …………2分
過作
交
于
,則
平面
.
∵平面
,
∴. …………4分
∵,∴四邊形
平行四邊形,
∴,
∴,又
,
∴四邊形為正方形,
∴,
……………6分
又平面
,
平面
,
∴⊥平面
.
………………………7分
∵平面
,
∴.
………………………8分
(2)∵平面
,
平面
∴平面⊥平面
由(1)可知
∴⊥平面
∵平面
∴
……………………9分
取的中點
,連結
,
∵四邊形是正方形,
∴
∵平面
,
平面
∴⊥平面
∴⊥
[來源:學|科|網Z|X|X|K]
∴是二面角
的平面角, ………………………12分
由計算得
∴
………………………13分
∴平面與平面
所成銳二面角的余弦值為
.………………………14分
解法2
∵平面
,
平面
,
平面
,
∴,
,
又,
∴兩兩垂直. ……………………2分
以點E為坐標原點,分別為
軸建立如圖所示的空間直角坐標系.
由已知得,(0,0,2),
(2,0,0),
(2,4,0),
(0,3,0),
(0,2,2),
(2,2,0). …………………………4分
∴,
,………6分
∴, ………7分
∴. …………………………8分
(2)由已知得是平面
的法向量. ………………………9分
設平面的法向量為
,
∵,
∴,即
,令
,得
. ……………12分
設平面與平面
所成銳二面角的大小為
,
則 …………………………13分
∴平面與平面
所成銳二面角的余弦值為
.
…………………………14分
【解析】略
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com