(本題滿分12分)
已知動圓過點
,且與圓
相內切.
(1)求動圓的圓心的軌跡方程;
(2)設直線(其中
與(1)中所求軌跡交于不同兩點
,D,與雙曲線
交于不同兩點
,問是否存在直線
,使得向量
,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
解:(1)圓, 圓心
的坐標為
,半徑
.
∵,∴點
在圓
內.
設動圓的半徑為
,圓心為
,依題意得
,且
,
即.
∴圓心的軌跡是中心在原點,以
兩點為焦點,長軸長為
的橢圓,設其方程為
, 則
.∴
.
∴所求動圓的圓心的軌跡方程為
.…………………………………4分
(2)由 消去
化簡整理得:
設,
,則
……………………………………6分
△. ①
由 消去
化簡整理得:
.
設,則
,
△. ② ……………………………………8分
∵,∴
,即
,
∴.∴
或
.
解得或
……… 10分
當時,由①、②得
,
∵Z,,∴
的值為
,
,
;
當,由①、②得
,
∵Z,,∴
.
∴滿足條件的直線共有9條.………………………………………………12分
【解析】略
科目:高中數學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數學 來源:2012-2013學年上海市金山區高三上學期期末考試數學試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題
(本題滿分12分)
設函數(
,
為常數),且方程
有兩個實根為
.
(1)求的解析式;
(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com