【題目】如圖所示的多面體中,平面
,
,
,且
,點
是
的中點.
(1)求證:平面平面
;
(2)求二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知函數,g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調區間;
(2)已知函數f(x)的曲線與函數g(x)的曲線有兩個交點,設兩個交點的橫坐標分別為x1,x2,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的一焦點與
的焦點重合,點
在橢圓C上.直線l過點(1,1),且與橢圓C交于A,B兩點.
(1)求橢圓C的方程;
(2)點M滿足,點O為坐標原點,延長線段OM與橢圓C交于點P,四邊形OAPB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在
上的最大值;
(2)令,若
在區間
上為單調遞增函數,求
的取值范圍;
(3)當 時,函數
的圖象與
軸交于兩點
,且
,又
是
的導函數.若正常數
滿足條件
.證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年年底,三部進口影片登錄銀屏,包括《海王》,《龍貓》和《蜘蛛俠》,經過了解,
電影比《蜘蛛俠》早上映一周,
電影的票房比《龍貓》高,《蜘蛛俠》的票房比
電影低,據此可以判斷( )
A.是《海王》,
是《蜘蛛俠》,
是《龍貓》
B.是《蜘蛛俠》,
是《龍貓》,
是《海王》
C.是《龍貓》,
是《海王》,
是《蜘蛛俠》
D.是《龍貓》,
是《蜘蛛俠》,
是《海王》
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬季奧運會即第24屆冬季奧林匹克運動會,將在2022年2月4至2月20日在北京和張家口聯合舉行.某研究機構為了解大學生對冰壺運動的興趣,隨機從某大學學生中抽取了120人進行調查,經統計男生與女生的人數之比為11:13,男生中有30人表示對冰壺運動有興趣,女生中有15人表示對冰壺運動沒有興趣.
(1)完成2×2列聯表,并回答能否有99%的把握認為“對冰壺是否有興趣與性別有關”?
有興趣 | 沒有興趣 | 合計 | |
男 | 30 | ||
女 | 15 | ||
合計 | 120 |
(2)若將頻率視為概率,現再從該校全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰壺有興趣的人數為X,若每次抽取的結果是相互獨立的,求X的分布列,期望和方差.
附:參考公式,其中n=a+b+c+d.
臨界值表:
P(K2≥K0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
K0 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點分別是
,橢圓
上短軸的一個端點與兩個焦點構成的三角形的面積為
;
(1)求橢圓的方程;
(2)過作垂直于
軸的直線
交橢圓
于
兩點(點
在第二象限),
是橢圓上位于直線
兩側的動點,若
,求證:直線
的斜率為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com