【題目】已知橢圓C1 , 拋物線C2焦點均在x軸上,C1的中心和C2頂點均為原點O,從每條曲線上各取兩個點,將其坐標記錄于表中,則C1的左焦點到C2的準線之間的距離為( )
x | 3 | ﹣2 | 4 | |
y | -2 | 0 | ﹣4 |
A. -1
B. -1
C.1
D.2
科目:高中數學 來源: 題型:
【題目】已知 分別是橢圓
的左、右焦點,離心率為
,
,
分別是橢圓的上、下頂點,
.
(Ⅰ)求橢圓 的方程;
(Ⅱ)過 (0,2)作直線
與
交于
兩點,求三角形
面積的最大值(
是坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的方程為y=x+2,點P是拋物線y2=4x上到直線l距離最小的點,點A是拋物線上異于點P的點,直線AP與直線l交于點Q,過點Q與x軸平行的直線與拋物線y2=4x交于點B.
(Ⅰ)求點P的坐標;
(Ⅱ)證明直線AB恒過定點,并求這個定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上海市松江區天馬山上的“護珠塔”因其傾斜度超過意大利的比薩斜塔而號稱“世界第一斜塔”.興趣小組同學實施如下方案來測量塔的傾斜度和塔高:如圖,記O點為塔基、P點為塔尖、點P在地面上的射影為點H.在塔身OP射影所在直線上選點A,使仰角k∠HAP=45°,過O點與OA成120°的地面上選B點,使仰角∠HPB=45°(點A,B,O都在同一水平面上),此時測得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長,精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的組合體中,三棱柱ABC﹣A1B1C1的側面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點.
(Ⅰ)若圓柱的軸截面是正方形,當點C是弧AB的中點時,求異面直線A1C與AB1的所成角的大。
(Ⅱ)當點C是弧AB的中點時,求四棱錐A1﹣BCC1B1與圓柱的體積比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由n(n≥2)個不同的數構成的數列a1 , a2 , …an中,若1≤i<j≤n時,aj<ai(即后面的項aj小于前面項ai),則稱ai與aj構成一個逆序,一個有窮數列的全部逆序的總數稱為該數列的逆序數.如對于數列3,2,1,由于在第一項3后面比3小的項有2個,在第二項2后面比2小的項有1個,在第三項1后面比1小的項沒有,因此,數列3,2,1的逆序數為2+1+0=3;同理,等比數列 的逆序數為4.
(1)計算數列 的逆序數;
(2)計算數列 (1≤n≤k,n∈N*)的逆序數;
(3)已知數列a1 , a2 , …an的逆序數為a,求an , an﹣1 , …a1的逆序數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=ax2﹣2ax+1+b(a>0)在區間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|),x∈R;
(1)求實數a、b的值;
(2)若不等式 對任意x∈R恒成立,求實數k的范圍;
(3)對于定義在[p,q]上的函數m(x),設x0=p,xn=q,用任意xi(i=1,2,…,n﹣1)將[p,q]劃分成n個小區間,其中xi﹣1<xi<xi+1 , 若存在一個常數M>0,使得不等式|m(x0)﹣m(x1)|+|m(x1)﹣m(x2)|+…+|m(xn﹣1)﹣m(xn)|≤M恒成立,則稱函數m(x)為在[p,q]上的有界變差函數,試證明函數f(x)是在[1,3]上的有界變差函數,并求出M的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·上海)設z1, z2C, ,則“z1, z2中至少有一個數是虛數”是“z1-z2是虛數”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列選項中說法正確的是( )
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 ,
滿足
,則
與
的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com