精英家教網 > 高中數學 > 題目詳情

.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點.

(1)求證:平面PCE 平面PCD;

(2)求三棱錐P-EFC的體積.

 

【答案】

(Ⅰ)

 

(Ⅱ)。

【解析】

試題分析:(Ⅰ)

 

(Ⅱ)由(2)知,

考點:本題主要考查立體幾何中的垂直關系,體積計算。

點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

( 本題滿分12分 )
已知函數f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)已知數列是首項為,公比的等比數列,,

,數列.

(1)求數列的通項公式;(2)求數列的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年上海市金山區高三上學期期末考試數學試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實數a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省高三10月月考理科數學試卷(解析版) 題型:解答題

(本題滿分12分)

設函數,為常數),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶市高三第二次月考文科數學 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视