【題目】設函數f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實數a的取值范圍是( )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)
【答案】D
【解析】x1∈R,f(x)=|x|∈[0,+∞),
∵x2∈R,使f(x1)=g(x2),
∴g(x)=lg(ax2﹣4x+1)的值域包含[0,+∞),
當a=0時,g(x)=lg(﹣4x+1),顯然成立;
當a≠0時,要使g(x)=lg(ax2﹣4x+1)的值域包含[0,+∞),
則ax2﹣4x+1的最小值小于等于1,
∴ , 即a>0.
綜上,a≥0.
∴實數a的取值范圍是[0,+∞).
故選:D.
【考點精析】通過靈活運用函數的值域,掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某公司欲制作容積為16米3 , 高為1米的無蓋長方體容器,已知該容器的底面造價是每平方米1000元,側面造價是每平方米500元,記該容器底面一邊的長為x米,容器的總造價為y元.
(1)試用x表示y;
(2)求y的最小值及此時該容器的底面邊長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖放置的邊長為1的正方形 沿
軸滾動(向右為順時針,向左為逆時針).設頂點
的軌跡方程是
,則關于
的最小正周期
及
在其兩個相鄰零點間的圖像與x軸所圍區域的面積S的正確結論是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從裝有個紅球和
個黒球的口袋內任取
個球,那么互斥而不對立的兩個事件是( )
A.至少有一個黒球與都是黒球
B.至少有一個黑球與都是紅球
C.至少有一個黒球與至少有個紅球
D.恰有個黒球與恰有
個黒球
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com