【題目】已知,
是橢圓
的左右焦點,橢圓與
軸正半軸交于點
,直線
的斜率為
,且
到直線
的距離為
.
(1)求橢圓的方程;
(2)為橢圓
上任意一點,過
,
分別作直線
,
,且
與
相交于
軸上方一點
,當
時,求
,
兩點間距離的最大值.
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,
(
為常數)對于任意的
恒成立.
(1)若,求
的值;
(2)證明:數列是等差數列;
(3)若,關于
的不等式
有且僅有兩個不同的整數解,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足
.
(1)求點P的軌跡方程;
(2)設點在直線
上,且
.證明:過點P且垂直于OQ的直線
過C的左焦點F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設動點在圓
上,動線段
的中點
的軌跡為
,
與直線
交點為
,且直角坐標系中,
點的橫坐標大于
點的橫坐標,求點
的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,點F為AB的中點,點E為線段A1C1上的動點.
(1)求證:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面體A1B1EF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,平面
平面
,
和
均是等腰直角三角形,
,
,
、
分別為
、
的中點.
(Ⅰ)求證:平面
;
(Ⅱ)求證:;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,動直線l與橢圓E交于不同的兩點
,
,且△AOB的面積為1,其中O為坐標原點.
(1)證明:為定值;
(2)設線段AB的中點為M,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新型冠狀病毒屬于屬的冠狀病毒,有包膜,顆粒常為多形性,其中包含著結構為數學模型的
,
,人體肺部結構中包含
,
的結構,新型冠狀病毒肺炎是由它們復合而成的,表現為
.則下列結論正確的是( )
A.若,則
為周期函數
B.對于,
的最小值為
C.若在區間
上是增函數,則
D.若,
,滿足
,則
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩名槍手進行射擊比賽,每人各射擊三次,甲三次射擊命中率均為;乙第一次射擊的命中率為
,若第一次未射中,則乙進行第二次射擊,射擊的命中率為
,如果又未中,則乙進行第三次射擊,射擊的命中率為
.乙若射中,則不再繼續射擊.則甲三次射擊命中次數的期望為_____,乙射中的概率為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com